Теперь представьте себе, что у вас есть счетная электронная машина с набором переключателей (например, полупроводниковых). Каждый переключатель может находиться в одной из двух позиций — «включено» (когда ток проходит через переключатель) или «выключено» (когда ток не проходит через переключатель).
Теперь предположим, что положение «включено» соответствует 1, а положение «выключено» соответствует 0. В этом случае счетную машину можно спроектировать таким образом, чтобы переключение электрического сигнала различными переключателями подчинялось правилам сложения, умножения и другим действиям с единицами и нулями в двоичной системе.
Такая машина будет так быстро производить переключение и производить вычисления с такой скоростью, что сможет выполнить за считаные секунды такой объем вычислений, на который человеку потребовалось бы не меньше месяца.
Однако, рассматривая различные системы счета, мы сильно уклонились от основной темы нашей книги. Теперь мы возвращаемся к десятеричной системе, и вся дальнейшая информация будет подана именно в десятеричной системе.
Для того чтобы четко уяснить себе, какие действия можно производить с экспоненциальными числами на основе 10, начнем работать с относительно небольшими числами, а не с такими огромными, как масса Земли, о которой шла речь в начале главы.
Предположим, нам надо выразить в экспоненциальной форме число 3200. Мы можем использовать только целые числа, поэтому разобьем число 3200 следующим образом: (3 × 1000) + (2 × 100) или (3 × 10>3) + (2 × 10>2). Но гораздо удобнее в тех случаях, когда это возможно, пользоваться одной экспонентой. Этого можно добиться, используя десятичные дроби. Представим 3200 в виде 3,2 × 1000 (можете самостоятельно произвести умножение и проверить правильность этого утверждения) или 3,2 × 10>3.
Можно, конечно, представить 3200 как 32 × 100, что в экспоненциальной форме даст 32 × 10>2. Можно выбрать такой вариант: 3200 = 0,32 × 1000 или 0,32 × 10>4. Все эти выражения идентичны. Этот факт можно подтвердить, произведя операции умножения. Для каждого отдельного случая мы получим 3200. Но этот факт можно подтвердить, не производя операций умножения.
Предположим, надо умножить 40 на 50.
40 × 50 = 2000.
Теперь разделим один из сомножителей на 2, а другой умножим на 2. Получаем 20 × 100, или 80 × 25. И в том и в другом случае результат один и тот же, 2000. Предположим, мы умножаем один из сомножителей на 10, а другой делим на 10. Тогда мы получаем 4 × 500 или 400 × 5. И в том и в другом случае результат один и тот же, 2000.
Другими словами, при перемножении двух чисел их произведение не меняется, если один из сомножителей умножить на какое-то число, а другой разделить на это же самое число.
Теперь рассмотрим произведение 3,2 × 10>3. Умножим 3,2 на 10 и разделим 10>3 на 10. Как мы уже знаем, произведение от этого не изменится.
3,2 × 10 = 32. Разделим 10>3 на 10 (или, что одно и то же, умножим на 10>1) и получим 10>2. Теперь произведение выглядит как 32 × 10>2, при этом его величина не изменяется.