×
Traktatov.net » Интернет вещей. Новая технологическая революция » Читать онлайн
Страница 58 из 139 Настройки

Рисунок 5.4. Пример FANUC


Чтобы приблизить время простоя к нулю, FANUC начала собирать операционные и диагностические данные, генерируемые ее роботами, работающими в производственных цехах (само собой, с позволения клиентов), хранить их в облаке и использовать предиктивную аналитику для устранения всех потенциальных проблем, прежде чем они окажут свое негативное влияние. И это работает! FANUC убедила ОТ– и ИТ-департаменты своих клиентов делиться данными. Анализируя эти данные в реальном времени с опорой на архивную информацию и метрики и улучшая время реакции на потенциальные инциденты, FANUC применяет IoT, чтобы предлагать своим клиентам профилактическое решение, которое точно (не забывайте, вещи неизбежно ломаются) станет бесценным.

Вспомните приведенный в прошлой главе комментарий Саджита Чанда об огромном потенциале энергосбережения. Вот как обслуживающая производственную цепочку Cisco команда достигает этого при помощи предиктивной аналитики. «Мы управляем всеми аспектами производственных затрат на наших фабриках, высчитывая их до последнего цента… Во всяком случае, нам так казалось», – сказал старший вице-президент Cisco Джон Керн, отвечающий за деятельность производственной цепи. Но до недавнего времени Cisco не контролировала один аспект своих расходов – стоимость электроэнергии. На одном производственном предприятии Cisco в Малайзии обслуживающая производственную цепочку команда развернула в цеху сеть из 1500 датчиков и использовала аналитическое программное обеспечение для сбора данных об энергопотреблении. Эта информация позволила им оценить энергоэффективность отдельных машин, систем и производственных процессов. К примеру, они взглянули на камеры для термотренировки и обнаружили, что расход энергии радикально различается даже у одинаковых моделей. Они копнули глубже, заменили недостаточно производительное оборудование и адаптировали работу камер, оптимизировав эффективность и энергопотребление. Результат: 15–20 %-ное сокращение энергопотребления на всем предприятии, которое на следующий год привело к экономии 1 миллиона долларов. Но для команды Керна это было лишь начало. Они уже ищут способы еще сильнее (на 30 %) сократить энергопотребление и внедрить эту систему на более чем 20 других предприятиях по всему миру. «Такие результаты открыли нам глаза. Мы сэкономили деньги и сократили свои углеродные выбросы», – заметил Керн.

IOT ДАСТ ШАНС ВСЕМ, КТО БОРЕТСЯ С ПРОБЛЕМАМИ В ВАШЕЙ ОРГАНИЗАЦИИ.

Как только вы связали машины, устройства, вещи и сопутствующие им датчики и счетчики друг с другом в единой сети и начали сбор данных, далее логично наладить предиктивную аналитику. Существует множество решений и алгоритмов предиктивной аналитики, причем некоторые из них фокусируются на отдельных отраслях, сценариях использования и средах. Все эти решения оценивают приходящие к ним данные, сравнивают их с теми данными, которые были проанализированы ранее, рассчитывают влияние множества параметров, включая среду, погоду, материалы и операции, и предсказывают тенденции со статистической точностью. Благодаря этому вы знаете, что конкретная проблема с вероятностью X процентов возникнет в определенный промежуток времени, а это дает вам возможность заблаговременно предупредить нужных людей, чтобы они приняли необходимые корректирующие меры.