×
Traktatov.net » Интернет вещей. Новая технологическая революция » Читать онлайн
Страница 59 из 139 Настройки

Это не магия – это просто проверенная статистика и теория вероятности. Чем дольше история и чем больше у вас данных, тем точнее ваши предсказания. Используя подходящее, разработанное на основе правил программное обеспечение, предиктивная система может сообщать вам, что и когда произойдет, и предлагать ранжированный по приоритету список возможных вариантов решения потенциальных проблем. Благодаря этому вы сами или ваши сотрудники получаете возможность принимать лучшие решения. Как и остальные сценарии быстрого достижения результатов, предиктивная аналитика представляет собой лишь первый шаг на пути к IoT. Как только вы внедрите предиктивную аналитику в свою производственную среду, ваша организация сможет оценивать и внедрять более сложные аналитические решения, включая прескриптивную аналитику и даже обучение на базе межмашинного взаимодействия.


Внедрение предиктивного технического обслуживания для повышения времени работоспособности системы и продуктивного времени

Предыдущий сценарий сосредоточен на шагах, которые обычные компании любой отрасли могут предпринять для достижения быстрых результатов. Но некоторые особые случаи требуют отдельного упоминания. Одна из моих любимых историй о получении быстрой выгоды от IoT рассказывает о нетипичной компании в нетипичной отрасли. Это история горнодобывающего предприятия Rio Tinto (рис. 5.5), которую я уже рассказывал в главе 3. Однако ее стоит рассказать еще раз. Она показывает, как быстрые результаты достигаются даже в экстремальных условиях. Внедренное Rio Tinto предиктивное техническое обслуживание окупилось сполна. Такие же выгоды может получить и любая другая компания, чьи системы и операции развернуты в экстремальной среде.


Рисунок 5.5. Пример Rio Tinto


Задача Rio Tinto заключалась в объединении процессов и оборудования в единую сеть с целью повышения эффективности, максимизации безопасности, минимизации штата и оптимизации объемов выработки. Ключевым аспектом проекта являлась автоматизация примерно 900 гигантских самосвалов посредством установки в каждый 92 датчиков для мониторинга состояния двигателей, трансмиссии и колес. Датчики отслеживают состояние, скорость, местоположение и другие параметры, позволяя грузовикам – которые перемещаются только по частной территории – функционировать без водителей.

Суммарно парк Rio Tinto генерирует примерно 4,9 ТБ данных ежедневно. Эта информация не только контролирует работу грузовиков, но и повышает эффективность операций. Превентивное техническое обслуживание обеспечивает максимальный срок службы оборудования. Датчики местоположения также позволяют для каждого грузовика выбирать самый короткий маршрут для минимизации потребления топлива. Как ни удивительно, эти маленькие выгоды выливаются в огромные преимущества.

Большинство необходимых технологий для создания такой системы уже существует – это и умные датчики, и интеллектуальные компоненты, и протоколы связи, и опыт в сфере программного обеспечения. Давайте снова обратимся к Rio Tinto. Как мы знаем, предприятие использует крайне дорогостоящее оборудование в очень агрессивной и удаленной среде. Это оборудование рано или поздно ломается, и лучше, чтобы это происходило не на самом дне глубокого карьера. Временные и финансовые затраты на ремонт вышедшего из строя оборудования Rio Tinto слишком велики – около 2 миллионов долларов в день на каждый сломанный грузовик. Теперь удвойте эти расходы, поскольку компания также вынуждена снять с работы еще один грузовик, который используется, чтобы вытащить поврежденную машину из карьера. (Чтобы вытащить одну из этих громадин, в дорожную службу не обратишься.) В итоге затраты Rio Tinto уже возрастают до 4 миллионов долларов в день – и это даже не считая стоимости ремонта поврежденного оборудования.