×
Traktatov.net » Интернет вещей. Новая технологическая революция » Читать онлайн
Страница 56 из 139 Настройки

Рисунок 5.3. Пример Nimble Wireless


Через тринадцать месяцев молокоперерабатывающая компания сообщила о пятикратной окупаемости изначальных инвестиций. Теперь Nimble Wireless расширяет это решение, предлагая его другим индийским компаниям пищевой промышленности, которые производят сыр, масло и специи.

Вот последний пример: врезка нелегальных кранов в трубопровод и кражи нефти. Это огромная проблема, из-за которой отрасль недополучает миллиарды долларов. Как ни удивительно, такое случается часто – и не только в развивающихся странах. Решение: умный очистной скребок – устройство, которое можно установить в трубопровод во время его обычной работы. Умные скребки содержат различные датчики, которые выявляют наличие нелегальных кранов и сообщают о них, а также предупреждают о проблемах вроде коррозии стенок трубопровода или потенциальных протечках. В сочетании с облачной аналитикой и системой генерации отчетов такое решение дает клиенту потрясающие преимущества. «Используя умные скребки, клиенты могут на 95 процентов сократить расходы на обнаружение проблем в трубопроводе в сравнении с использованием традиционных методов проверки», – заметил Стив Бэнкс, управляющий директор компании i2i Pipelines, занимающейся производством умных очистных скребков для трубопроводов.


К конкретным выгодам этого типа удаленных операций на базе IoT относятся:

• Сокращение операционных издержек, поскольку проблемы выявляются и исправляются раньше, чем наступит ухудшение ситуации. Сокращаются и переменные операционные издержки, такие как потребление бензина.

• Сокращение количества срывов графика поставок и производства: компании лучше справляются с выполнением обязательств по уровню обслуживания и избегают любых предусмотренных договором штрафов.

• Повышение своевременности доставки, которое помогает улучшить обслуживание клиентов.

• Сокращение системных расходов, вызванных задержками, что помогает компании избежать всевозможных расходов из-за задержек.

• Оптимизация логистических систем, которая позволяет организации лучше оптимизировать ресурсы водителей, логистики, автомобилей и базы в целях максимизации эффективности.


Использование предиктивной аналитики для выявления и понимания проблем и незамедлительного принятия необходимых мер

Как я писал в предыдущей главе, именно предиктивная аналитика обеспечивает получение самых крупных преимуществ от внедрения IoT. Подключение устройств к сети и добавление ряда датчиков и счетчиков быстро приводит к генерации большего объема информации, чем может вручную обработать ваш персонал. Более того, когда данные IoT начнут поступать быстрее, чем их можно будет анализировать, у вашей команды голова пойдет кругом, несмотря на все сигналы и предупреждения. По мнению старшего вице-президента и научного сотрудника IDC Вернона Тернера, который занимается изучением интернета вещей, сегодня анализируется менее одного процента генерируемых данных. Предиктивная аналитика нужна вам, чтобы как минимум помочь своим сотрудникам с сортировкой и пониманием потока информации для обеспечения принятия обоснованных решений. Это не высшая математика – просто понимая основные схемы и выявляя исключения и отклонения от общего правила, вы уже сможете извлечь немалую выгоду. Но это только начало. Преимущество подключения всех этих умных ресурсов к единой IP-сети состоит в возможности корреляции и комбинирования данных, происходящих из разных источников, с целью получения новых сведений и принятия необходимых мер.