×
Traktatov.net » Числа: от арифметики до высшей математики » Читать онлайн
Страница 40 из 68 Настройки

Предположим, мы сравниваем два отрезка. Длина одного из них 2 см, а длина другого — 1 см. Следовательно, мы можем сказать, что длины отрезков соотносятся как 2 к 1, или один отрезок в два раза длиннее другого. Длина одного из отрезков 4 см, а длина другого — 2 см, то можно сказать, что длины отрезков соотносятся как 4 к 2.

В обоих случаях длина одного из отрезков вдвое больше длины другого отрезка. С точки зрения математика, соотношение величин представляет гораздо больший интерес, чем их абсолютные значения. Не так важно, что в одном случае длины равны 4 и 2 см, а в другом 48 и 24 см. Математик в обоих случаях обратит внимание на то, что длина одного отрезка вдвое больше длины другого, то есть соотносятся как 2 к 1.

 Прямоугольник с диагональю

Самое удобное — представить соотношение величин в виде дроби. Если длина одного отрезка равна 2 см, а длина другого — 1 см, значит, их соотношение равно 2/1. Если длина одного отрезка равна 48 см, а длина другого 24 см, значит, их соотношение равно 48/24 или 2/1, если мы разделим обе части на 24.

Дробь, представляющая собой отношение двух однотипных величин, называется соотношением. (Этими величинами могут быть и длины отрезков, и объемы сосудов, и веса двух человек и так далее.)

Разумеется, соотношение может не быть таким простым, как 2 : 1. Предположим, длина одного отрезка равна одному сантиметру, а длина другого — 1>9/>10 сантиметра.

Тогда соотношение равно 1>9/>10/1. Это выражение можно упростить, умножив верхнюю и нижнюю части на 10. Тогда получим, что соотношение равно 19/10.

Соотношение любых двух чисел, выраженных дробными числами, может быть представлено как отношение двух целых чисел. Например, у нас есть два отрезка, длина одного из них — 2>4/>17 сантиметра, а длина другого — 1>13/>15 сантиметра. Соотношение этих двух отрезков можно представить в виде дроби — 2>4/>17/1>13/>15. Если мы умножим числитель и знаменатель этой пугающе сложной дроби на 127½, то получим то же соотношение в виде целых чисел, то есть 285/238.

(Гораздо проще было бы воспользоваться десятичными дробями, но в Древней Греции они не были известны. А если мы последуем по тому же пути, по которому древние математики познавали мир, наше путешествие будет значительно интереснее.)

Теперь можно вернуться к нашему прямоугольнику. Нас интересует соотношение длин сторон прямоугольника и длин диагонали, то есть мы решаем ту же задачу, что и греческие математики в древности. Поскольку прямоугольник разделяется диагональю на две абсолютно симметричные части, мы можем упростить задачу и отбросить одну половину фигуры, предположим, левую. У нас остался так называемый прямоугольный треугольник.

Прямоугольный треугольник с гипотенузой

Еще за много столетий до наших дней египтяне на основе практического опыта установили, что если одна сторона прямоугольного треугольника равна 3 единицам, а другая — 4 единицам, то длина гипотенузы составит 5 единиц. В этом случае соотношение гипотенузы и одной из сторон равно 5/4 для более длинной стороны и 5/3 для более короткой.

Греки подошли к задаче с более общих позиций. Им важно было найти закономерность, то есть соотношение длин сторон прямоугольника и длин диагонали для любого прямоугольного треугольника.