Поскольку 1,82 : 10 согласно правилу обратных дробей равно также 1,82 × 0,1, что, в свою очередь, равно 0,182. Такой же ответ мы бы получили, если бы согласно правилу перемещения десятичной запятой передвинули запятую на один знак влево.
Поскольку умножение или деление на 10 приводит просто к сдвигу положения десятичной запятой, удобно перейти к процентам.
Давно стало привычным, что люди или организации, которые предоставляют деньги в долг, получают обратно помимо одолженной суммы определенную добавочную сумму в оплату за предоставление кредита. Эта сумма получила название «процент».
Эта сумма предоставляется в качестве компенсации за то, что кредитор остается на какое то время без своих денег, кроме того, она является компенсацией риска не получить своих денег назад. Например, частное лицо или организация могут попросить 6 долларов годовых процентов за каждые одолженные 100 долларов.
Поскольку очень часто эти «проценты» вычисляются из расчета на каждые 100 долларов (слово «процент» пришло к нам из латинского языка, где «per cent» означает «на сотню»).
Обычно при подсчете доходов, наценок и комиссионных, а также многих других параметров используют проценты.
Один процент — это фактически 1 доллар на каждые 100, то есть 1/100. Чтобы найти один процент от любого числа, нужно передвинуть положение десятичной запятой на две единицы влево. Так, 1 процент от 1350 долларов равен 13,50 доллара. Сумма, составляющая 6 процентов от 1350, должна равняться 6 × (1/100) × 1350 = 6 × 13,50, или 81,00.
Десять процентов комиссионных составляют 10/100 от исходного числа, то есть 1/10. В этом случае десятичная запятая передвигается на один знак влево. А 10 процентов комиссионных составят 135 долларов.
Иногда при подсчетах процентов возникают некоторые проблемы. Например, 1 процент комиссионных от суммы 675,37 доллара составит 6,7537 доллара. Для практических целей не нужно больше двух знаков после десятичной запятой, и остальные цифры округляются. После округления комиссионные равны 6,75. Все эти соотношения хорошо работают при десятичной денежной системе. Для старой британской денежной системы процентные исчисления не очень удобны. Не очень просто найти 10 процентов от 135 фунтов 10 шиллингов. По моим подсчетам, это 13 фунтов 11 шиллингов, попробуйте сосчитать и вы.
Десятичные дроби без конца
В десятичной системе возникает много серьезных проблем и помимо определения положения десятичного знака. Дело в том, что некоторые дроби невозможно представить в виде обычных десятичных эквивалентов.
Рассмотрим, например, 1/3. Попробуем представить ее в виде десятичной дроби. Для того чтобы вычислить соответствующую десятичную дробь, надо записать 1/3 как 1,000000000/3 и провести деление следующим образом:
Нет смысла продолжать деление дальше, вы уже убедились, что его можно продолжать бесконечно.
Десятичный эквивалент для 1/3 — это 0,3333333333… и так далее.
В качестве следующего примера возьмем дробь 1/7. Представим ее в виде 1,00000000/7 и проведем деление. (Эту операцию я полностью доверяю читателю.) Получаем следующий десятичный эквивалент: