×
Traktatov.net » Голая статистика. Самая интересная книга о самой скучной науке » Читать онлайн
Страница 61 из 192 Настройки
. Оказалось, что ожидаемый доход для моего однодолларового лотерейного билета – примерно 0,56 доллара[26]. Таким образом, покупка такого билета – абсолютно бездарный способ потратить 1 доллар. Как назло, я выиграл 2 доллара.

Несмотря на мой неожиданный выигрыш, я все равно считаю, что покупка билета мгновенной лотереи – абсолютная глупость. Это один из важнейших уроков теории вероятностей. Хорошие решения – если их оценивать вероятностями, которые за ними кроются, – в действительности могут оказаться не такими уж хорошими. А плохие решения – например, покупка билета мгновенной лотереи в Иллинойсе – не такими уж плохими, по крайней мере на коротком отрезке времени. Но в конечном счете вероятность все равно торжествует. Важная теорема, известная как закон больших чисел, гласит, что по мере возрастания количества испытаний средний результат исходов все сильнее приближается к его математическому ожиданию. Да, я выиграл 2 доллара, купив сегодня билет мгновенной лотереи. И мог бы еще раз выиграть 2 доллара завтра. Но если я куплю тысячи однодолларовых лотерейных билетов, каждый с ожидаемым доходом 0,56 доллара, то я почти наверняка останусь в проигрыше. К тому времени, когда я потрачу на покупку лотерейных билетов один миллион долларов, мой выигрыш составит сумму, очень близкую к 560 000 долларов.

Закон больших чисел объясняет, почему в долгосрочном периоде казино всегда выигрывают. Вероятности, связанные со всеми играми, которые практикуются в казино, благоприятствуют последнему (при условии, что казино способно помешать игрокам в блек-джек вычислять карты). Если в течение довольно продолжительного отрезка времени было сделано достаточное количество ставок, то казино обязательно получит больше, чем потеряет. Закон больших чисел также объясняет, почему вероятность того, что компания Joseph Schlitz Brewing Company добьется нужного ей результата, повышается при выполнении 100 слепых дегустаций, а не десяти. Взгляните на «функции плотности вероятности» для 10, 100 и 1000 слепых дегустаций пива. (Несмотря на свое мудреное название, функция плотности вероятности просто отображает упорядоченные исходы вдоль оси x и ожидаемую вероятность каждого исхода вдоль оси y; в сумме эти вероятности дают 1.) Как и ранее, я предполагаю, что каждая дегустация эквивалентна подбрасыванию монетки, а каждый дегустатор выбирает пиво Schlitz с вероятностью 0,5. Как видно из приведенных ниже графиков, по мере увеличения количества дегустаторов ожидаемый исход все больше сосредоточивается в области выбора пива Schlitz половиной (50 %) дегустаторов. В то же время вероятность получения исхода, который резко бы отклонялся от 50 %, по мере роста числа испытаний резко падает.





Ранее я говорил, что руководство компании Joseph Schlitz Brewing Company было бы радо, если бы в ходе сравнительной слепой дегустации не менее 40 % любителей пива Michelob выбрали пиво Schlitz. Приведенные ниже числа отражают вероятность достижения такого результата по мере увеличения количества дегустаторов:

10 дегустаторов: 0,83