Здесь нужно сделать одно важное замечание. Эта формула применима только если события независимы; иными словами, когда исход одного события не оказывает влияния на исход другого события. Например, вероятность того, что в результате первого подбрасывания монетки выпадет орел, не влияет на вероятность исхода второго подбрасывания той же монетки. С другой стороны, вероятность того, что сегодня пойдет дождь, не независима от того, был ли он вчера, поскольку грозовые фронты могут сохраняться на протяжении нескольких дней. Аналогично, вероятность того, что сегодня ваш автомобиль попадет в аварию, и того, что он попадет в нее в следующем году, также не независимы друг от друга. То, что привело к аварии вашего автомобиля в этом году, может спровоцировать ДТП и в следующем году: возможно, вы склонны садиться за руль в нетрезвом состоянии, или вам нравится устраивать гонки на дороге, или строчить эсэмэски во время вождения; наконец, не исключено, что вы просто плохой водитель. (Именно поэтому после каждого очередного ДТП ваша страховая ставка повышается; дело не столько в желании страховой компании компенсировать деньги, выплаченные ею согласно страховому договору, сколько в том, что теперь она располагает новой информацией о вероятности вашего попадания в дорожно-транспортные происшествия в дальнейшем, поскольку – после того как вы, заезжая в гараж, сильно поцарапали свой автомобиль – такая вероятность повысилась.)
Допустим, вас интересует вероятность наступления одного (исхода A) или другого (исхода B) события (опять же предполагая, что они независимы). В этом случае вероятность наступления события A или B равна сумме их индивидуальных вероятностей, то есть вероятность A плюс вероятность B. Например, вероятность выпадания 1, 2 или 3 в результате подбрасывания одной игральной кости равняется сумме их отдельных вероятностей: 1/6 + 1/6 + 1/6 = 3/6 = ½. Это должно быть интуитивно понятно. При подбрасывании игральной кости есть шесть возможных исходов. Числа 1, 2 и 3 в совокупности составляют половину из них. Следовательно, вероятность выпадания 1, 2 или 3 вследствие подбрасывания одной игральной кости равняется 50 %. Если вы играете в кости в Лас-Вегасе, то вероятность выпадания 7 или 11 в результате однократного подбрасывания равна количеству комбинаций, составляющих в сумме 7 или 11, поделенному на общее число вариантов, которые могут выпасть в результате подбрасывания двух игральных костей, или 8/36[24].
Вероятность также позволяет подсчитать математическое ожидание – чрезвычайно полезный инструмент, используемый при принятии любых управленческих решений, особенно в сфере финансов. Математическое ожидание – это среднее значение случайной величины. Математическое ожидание, или отдача (функция выигрыша) от некоторого события, например покупки лотерейного билета, представляет собой сумму всех разных исходов, весовыми коэффициентами при каждом из которых являются вероятность исхода и выигрыш. Как обычно, приведем пример, чтобы прояснить смысл сказанного. Допустим, вам предложили сыграть в кости, причем подбрасывается только одна игральная кость. Функция выигрыша в этой игре такова: 1 доллар, если у вас выпадает 1; 2 доллара, если у вас выпадает 2; 3 доллара, если у вас выпадает 3 и т. д. Каково математическое ожидание в случае однократного подбрасывания игральной кости? Вероятность каждого из возможных исходов равняется 1/6, поэтому математическое ожидание вычисляется так: