Рис. 57. N= 50,n= 20. Здесь выборка и остаток близки по объему, 20 и 30 соответственно. График показывает отсутствие корреляции между долей красных бусин в выборке и долей красных бусин в остатке
Рис. 58. N= 600,n= 20. Здесь вариации в доле красных бусин в остатке явно намного меньше, чем в выборке. Причина в том, что остаток имеет объемN – n = 600 – 20 = 580, что многократно превышает объем выборки. Здесь снова корреляция между долей красных бусин в выборке и долей красных бусин в остатке, по-видимому, равна нулю
Рис. 59. N= 600,n= 200. Здесь видно, что происходит, когда мы увеличиваем объем выборки до 200 и уменьшаем объем остатка до 400. Этот график, как и раньше, иллюстрирует нулевую корреляцию между долей красных бусин в выборке и долей красных бусин в остатке
Рис. 60. N= 10 000,n= 1000. Опять никакой корреляции
Сокращенный список рекомендуемой литературы
George Barnard, «Sampling inspection and statistical decisions», Journal of the Royal Statistical Society, ser. B, vol. 16 (1954): 151–171 (Discussion of Mood's theorem).
David Durand, «Stable Chaos, General Learning Press, 1971. (См. стр. 234.)
A. Hald, «The compound hypergeometric distribution and a system of single sampling plans based on prior distributions and costs», Technometrics 2 (1960): 275–340. (Discussions on prior distributions).
Statistical Theory of Sampling Inspection by Attributes, Academic Press, 1981.
H. Hamaker, «Economic principles in industrial planning problems: a general introduction», Proceedings of the International Statistical Conference (India, 1951) 33, pt. 5 (1951): 106–119.
«Some basic principles of sampling inspection by attributes», Applied Statistics (1958): 149–158. (Interesting discussion of various approaches).
I. David Hill, «The economic incentive provided by sampling inspection», Applied Statistics 9, (1960): 69–81.
«Sampling inspection in defense specification DEF – 131», «Journal of the Royal Statistical Society, ser. A, vol. 125 (1962): 31–87.