×
Traktatov.net » Физическая химия » Читать онлайн
Страница 39 из 54 Настройки

Расстояние между плоскостями равно диаметру сольватированного комплекса (d). Таким образом, ДЭС можно рассматривать как плоский конденсатор:

D – диэлектрическая проницаемость, для Н>2О = 80, d = 10–>8 – расстояние между обкладками. Перераспределяемый заряд на границе раздела фаз имеет динамическое преобладание.

Согласно закону термодинамики, перенос вещества из одной фазы в другую характеризуется химическим потенциалом

μ = ΔG>хим

μ зависит от концентрации частиц.

μ = μ>0+RTlnС,

где С – концентрация частиц, участвующих в реакции переноса;

μ>0стандартное значение потенциала при С= 1.

Согласно термодинамике, перенос вещества из одной фазы в другую происходит таким образом, что химический потенциал вещества действует до тех пор, пока μ>1 = μ>2в обеих фазах.

Определяющимися ионами являются ионы Ag>+, следовательно, если химический μ ионов Ag (Ме),

то, согласно уравнению Ле-Шателье, перенос ионов Ag>+, в сторону раствора будет происходить с большей скоростью, чем в обратном направлении, в результате количество ионов Ag у поверхности будет увеличиваться, так как концентрация в растворе растет.

μ>Ag+ = μ>0 + RT lnC>Ag+.

Перенос происходит до тех пор, пока

Когда наступит равенство μ, скорость переноса в обоих направлениях через границу раздела фаз становится одинаковой.

Наступает равновесие; так как в переносе принимают участие заряженные частицы, то в этом случае говорят об электрохимическом равновесии. При установлении равновесия поверхность, с которой ушли Ag>+, приобретает избыток отрицательного заряда, под действием его избыток положительных зарядов собирается в растворе у поверхности.

Возникновение избытка заряда приводит к возникновению скачка μна границе раздела фаз. Согласно представлению о плоском конденсаторе, скачок потенциала изменяется линейно с расстоянием от поверхности электрода. Емкость такого плоского конденсатора, когда ионная обкладка ДЭС состоит из катионов, составляет С = 20 МКФ/см>2.

3. Современные подходы к описанию термодинамических свойств растворов электролитов

При теоретическом подходе к концентрированным растворам электролитов предпринимались попытки уточнить классическую модель теории Дебая – Хюккеля за счет учета следующих эффектов:

1) собственного объема ионов;

2) изменения диэлектрической проницаемости вблизи ионов вследствие диэлектрического насыщения растворителя;

3) изменения макроскопической диэлектрической проницаемости в объеме раствора в зависимости от концентрации и т. д.

Общий недостаток работ этого направления состоит в том, что в каждой из них учитывают только один или два из перечисленных эффектов.

Расхождение современных статических теорий наблюдается, в основном, в ходе функций распределения на малых расстояниях. Теоретический расчет потенциала взаимодействия частиц на малых расстояниях сложен и не может быть пока проведен однозначно, так как на таких расстояниях, наряду с кулоновскими силами, играют роль квантово-механические, дисперсионные и другие силы.

Г. Кеселером было развито специфическое взаимодействие ионов в растворах и показано, что некулоновские эффекты при сближении ионов проявляются вследствие десольватации ионов (при перекрытии сфер сольватации) и сольватации ионных пар как целого.