Чет или нечет?
Не видя числа, трудно, конечно, угадать, какое оно - четное или нечетное. Но не думайте, что вы всегда сможете сказать это, едва увидите задаваемое число. Скажите, например, четное или нечетное число 16?
Если вам известно, что оно написано по десятичной системе, то, без сомнения, можно утверждать, что число это - четное. Но когда оно написано по какой-либо другой системе - можно ли быть уверенным, что оно изображает непременно четное число?
Оказывается, нет. Если основание, например, семь, то «16» означает 7 + 6 = 13, число нечетное. То же будет и для всякого нечетного основания (потому что всякое нечетное число + 6 = нечетному числу).
Отсюда вывод, что знакомый нам признак делимости на два (последняя цифра четная) безусловно пригоден только для 10-тичной системы счисления, для других же - не всегда. А именно, он верен только для систем счисления с четным основанием: 6-ричной, 8-ричной и т. п. Каков же признак делимости на 2 для систем с нечетным основанием? Достаточно краткого размышления, чтобы установить его: сумма цифр должна быть четной. Например, число «136» четное во всякой системе счисления, даже и с нечетным основанием: действительно, в последнем случае имеем: нечетные числа[63] + нечетное число + четное = четному числу.
С такою же осторожностью надо отнестись к задаче: всегда ли число 25 делится на 5? В 7-ричной или в 8-ричной системе число, так изображенное, на 5 не делится (потому что оно равно девятнадцати или двадцати одному). Точно так же общеизвестный признак делимости на 9 (сумма цифр…) правилен только для десятичной системы. Напротив, в пятиричной системе тот же признак применим для делимости на 4, а, например, в семиричной - на 6. Так, число «323» в пятиричной системе делится на 4, потому что 3 + 2 + 3 = 8, а число «51» в семиричной - на 6 (легко убедиться, переведя числа в десятичную систему: получим соответственно 88 и 36). Почему это так, читатель сам сможет сообразить, если вникнет хорошенько в вывод признака делимости на 9 и приложит те же рассуждения, соответственно измененные, например, к семиричной системе для вывода признака делимости на 6.
Труднее доказать чисто арифметическим путем справедливость следующих положений:
Знакомые с начатками алгебры легко найдут основание, объясняющее свойство этих равенств. Остальные читатели могут проверить их рядом проб для разных систем счисления.
Дроби без знаменателя
Мы привыкли к тому, что без знаменателя пишутся только десятичные дроби. Поэтому с первого взгляда кажется, что написать прямо без знаменателя дробь >2/>7 или >1/>3 нельзя. Дело представится нам, однако, иначе, если вспомним, что дроби без знаменателя возможны и в других системах счисления. Что, например, означает дробь «0,4» в пятиричной системе? Конечно, >4/>5. Дробь «1,2» в семиричной системе означает 1 >2/>7. А что означает в той же семиричной системе дробь «0,33»? Здесь результат сложнее: >3/>7 + >3/>49 = >24/>49.
Рассмотрим еще несколько недесятичных дробей без знаменателя. Чему равны
a) «2,121» в троичной системе?