J(x>n>+1) – x>n) = –f(x>n).
Другими словами, решение нелинейных уравнений можно интерпретировать как повторное решение линейных уравнений на каждом этапе итерационного процесса.
Структура якобиана внешне совпадает с табличными уравнениями линейных цепей, которые преобразованы с учетом расчета по постоянному току — убраны конденсаторы и закорочены катушки индуктивности.
Пусть табличные уравнения заданы в следующей форме:
V>в – A>tV>п = 0;
p(V>в,i>в) = W;
AI>в = 0;
Система уравнений p(V>в,i>в) = W определяет связь между токами и напряжениями ветвей в неявной форме, некоторые из этих зависимостей могут быть линейными.
Матрица Якоби на n-й итерации будет иметь вид
где
Для формирования якобиана возможно использование различных модификаций табличного метода, в том числе и модифицированного узлового с проверкой. Результат анализа схемы по постоянному току (режим по постоянному току) может быть использован в качестве начального приближения при временном анализе нелинейных электронных схем.
Нелинейные уравнения легко включаются в уравнения цепи, составленные табличным или модифицированным узловым методом. Линейные элементы, как и прежде, линейными компонентными уравнениями. Для нелинейных уравнений характерны уравнения в неявной форме, хотя иногда нелинейности можно описать и в явной форме. Нелинейные емкости и индуктивности лучше всего описывать с помощью дополнительных переменных — электрических зарядов и магнитных потоков соответственно, которые должны быть введены в вектор неизвестных. Если это проделать, то уравнения, записанные как табличным, так и модифицированным узловым методами можно представить в следующем виде:
f(x', x, W, t) ≣ Ex' + Gx +p(x) = 0,
где E и G — постоянные матрицы, а все нелинейности сведены в вектор p(x).
Полученная система дифференциальных уравнений решается путем интегрирования с использованием формулы дифференцирования назад [4] и алгоритма Ньютона-Рафсона, для чего формируется якобиан. В целом структура якобиана для линейной и нелинейной цепи идентична, отличие между ними в том, что нелинейная емкость (индуктивность) будет представлена двумя уравнениями, а заряд q (поток f) станет еще одним неизвестным. Однако и для линейных емкостей и индуктивностей можно ввести заряды и магнитные потоки в качестве переменных, что приведет к совпадению якобиана и матрицы системы уравнений. Любая нелинейная проводимость появится в якобиане аналогично линейной проводимости в матрице C модифицированного узлового метода. Таким образом становится возможным единый подход к формированию и решению уравнений линейных и нелинейных цепей с целью получения их временных и частотных характеристик, что и успешно реализуется в современных пакетах схемотехнического проектирования.
Более подробно перечисленные методы, а также другие вопросы анализа электронных цепей приведены в [4]. В [19] описан один из пакетов схемотехнического проектирования Electronics Workbench.
9. ЗАКЛЮЧЕНИЕ
Ограниченный объем данного пособия не позволил в полной мере отразить весь круг вопросов построения и анализа АЭУ. При необходимости следует обращаться к литературе, ссылки на которую имеются в каждом разделе пособия. При выполнении расчетных заданий, лабораторных работ и курсового проекта следует пользоваться соответствующими учебными пособиями и методическими рекомендациями [19, 20].