Они слегка подвинулись, освобождая место, и я уселся между ними – новый партнер, третий в их числовом мире. Джон, лидер в этой паре, надолго задумался. Это продолжалось минут пять. Я сидел, едва дыша, боясь пошевелиться. Наконец Джон назвал девятизначное число. Майкл, подумав, ответил другим таким же. Наступила моя очередь, и я, тайком заглянув в таблицу, внес свой нечестный вклад – десятизначное число.
Опять последовала тишина, еще более длительная и сосредоточенная, чем раньше, и Джон, после какого-то невероятного внутреннего созерцания, назвал двенадцатизначное число. Я не мог ни проверить его, ни назвать свое в ответ, поскольку моя таблица (насколько мне было известно, единственная в своем роде) дальше десяти знаков не шла. Но то, перед чем спасовала таблица, Майклу оказалось вполне по плечу, хотя и заняло у него еще пять минут. Через час близнецы уже вовсю обменивались двадцатизначными числами. Предполагаю, что они тоже были простыми, но проверить этого я не мог. Тогда, в 1966 году, такую проверку могли осуществить только самые мощные компьютеры, и то это было непросто, даже с помощью решета Эратосфена[127] или любого другого алгоритма. Прямого способа вычисления простых чисел такого порядка вообще не существует – и тем не менее близнецы это делали[128].
Я снова подумал о Дэйзе, о котором читал много лет назад в великолепной книге Ф. Майерса «Человеческая личность» (1903). Майерс пишет:
Мы знаем, что Дэйз (возможно, самый одаренный из таких вундеркиндов) был напрочь лишен математических способностей… И тем не менее за двенадцать лет он составил таблицы множителей и простых чисел для седьмого и почти всего восьмого миллиона – задача, на выполнение которой нормальному человеку, не пользующемуся механическими средствами, не хватило бы целой жизни.
Майерс делает вывод, что Дэйз является единственным человеком в истории, который внес значительный вклад в математику, так и не сумев перейти через «ослиный мост»[129]. Из книги Майерса неясно, пользовался ли Дэйз при составлении таблиц каким-либо методом или, как позволяют предположить проведенные с ним эксперименты, тоже «видел» простые числа… Возможно, этот вопрос неразрешим в принципе.
Из окна своего кабинета в больнице я часто наблюдал за близнецами – за их бесконечными числовыми играми, за числовым общением, сущность которого оставалась мне недоступна.
Но, даже не зная, что происходило между ними, я был твердо уверен, что они имели дело с реальными свойствами числовых объектов, ибо случайные числа, да и вообще любая произвольность не доставляли им никакого удовольствия. В числах они искали смысл – вероятно, подобным образом музыканты ищут в звуках гармонию.
Сравнение близнецов с музыкантами пришло совсем неожиданно, а затем возникла ассоциация с Мартином (см. главу 22), еще одним умственно отсталым пациентом, нашедшим в ясной и величественной архитектонике Баха осязаемое проявление высшего порядка. «Тот, кто сам сочинен гармонично, – пишет сэр Томас Браун[130], – наслаждается гармонией… чистым созерцанием Первого Композитора. Божественная сущность этой гармонии глубже, чем доступно уху; это таинственный, отраженный опыт целого мира… чувственное проявление того порядка, интеллектуальный строй которого слышит Бог… Душа благозвучна и находит ближайшее подобие в музыке