×
Traktatov.net » Человек, который принял жену за шляпу » Читать онлайн
Страница 121 из 139 Настройки

Такова позитивная сторона принятых мер, но есть и негативная, о которой не упоминается в их историях болезни, поскольку ущерба, нанесенного близнецам, вообще не признают. Лишившись числового «общения» и, тем самым, духовной связи с кем бы то ни было (их вечно теребят и перебрасывают с одной работы на другую), близнецы потеряли свои странные способности, а с ними единственную радость и смысл жизни. Не сомневаюсь, что это сочтут у нас умеренной платой за суррогат независимости и возвращение в «лоно общества».

Такое обращение с близнецами напоминает лечение, которому подвергли Надю, аутичную девочку с выдающимися способностями к рисованию (см. главу 24). Ей также прописали режим усиленной терапии, дабы «выяснить, как максимизировать ее возможности в других направлениях». В результате она стала говорить – и перестала рисовать. Найджел Деннис по этому поводу замечает: «У гения отняли гениальность, оставив только общую недоразвитость. Что нам думать о таком странном исцелении?»

Ф. Майерс, начиная главу «Гениальность» с обсуждения арифметических гениев, утверждает, что «странные» способности некоторых людей часто нестабильны и могут вдруг исчезнуть без всяких видимых причин; иногда же, напротив, они сохраняются в течение всей жизни. В случае близнецов это были, конечно, не просто «способности», но личностная и эмоциональная основа всего их существования. Разлучившись и утратив ее, они духовно погибли[135].

Постскриптум

Израиль Розенфельд, прочитав рукопись этой главы, рассказал мне о высших разделах арифметики, в которых некоторые операции выполнять проще, чем привычными способами. Он также поинтересовался, не связаны ли особые способности близнецов (и пределы этих способностей) с использованием такой «модулярной» арифметики. В письме ко мне он высказал предположение, что календарные таланты близнецов могут объясняться специальными модулярными алгоритмами, описанными в книге Яна Стюарта «Концепции современной математики» (1975). Вот выдержка из этого письма:

Их способность определять дни недели в пределах восьмидесяти тысяч лет предполагает довольно простой алгоритм. Нужно разделить число дней между «сейчас» и «тогда» на семь[136]. Если делится без остатка, это тот же день недели, что и сегодня. Если в остатке единица, то это на день позже и т. д. Заметьте, что модулярная арифметика циклична, она основана на повторении комбинаций. Возможно, близнецы могли видеть эти комбинации – либо в форме легко конструируемых диаграмм, либо как своего рода «ландшафт», спираль из целых чисел, напоминающую рисунок на 30-й странице книги Стюарта.

Это не объясняет, почему близнецы пользуются языком простых чисел, но здесь возможно следующее: календарная арифметика основана на простом числе семь, и если думать о модулярной арифметике вообще, то деление в ней дает элегантные циклические комбинации только для простых чисел. Поскольку число семь помогает близнецам восстанавливать даты, а вместе с ними конкретные события их жизни, они могли обнаружить, что другие простые числа производят комбинации, похожие на те, которые так важны для актов воспоминания. (Когда они говорят о спичках «111 – трижды 37», заметьте, что они берут простое число 37 и умножают его на три). Возможно, только простые числа могут быть «увидены».