×
Traktatov.net » Аналитическая культура. От сбора данных до бизнес-результатов » Читать онлайн
Страница 41 из 163 Настройки

Рис. 4.1. Профиль команды лаборатории данных компании Nordstrom (по состоянию на 2013 год). МО = машинное обучение. DevOps — относительно новый термин, обозначающий интеграцию разработки и эксплуатации программного обеспечения


Как вы сами видите, названия специалистов, работающих с данными, как и их функции, во многом пересекаются. В основном они обрабатывают данные с помощью разных языков программирования типа SQL.

В одних случаях требуются более серьезные навыки программирования, а в других можно обойтись и без них. Нередко требуется построение статистических моделей с применением SAS или R. В большинстве случаев работа аналитика объединяет подготовку отчетов и собственно проведение анализа.

Аналитика — это командный спорт

Аналитика требует слаженной командной работы. В компании с управлением на основе данных, в которой четко налажены рабочие процессы, присутствуют как аналитики разных типов, так и сотрудники с дополняющими их навыками. При найме новых сотрудников принимается во внимание «портфолио» совокупных навыков всей команды, чтобы найти таких потенциальных кандидатов, которые «закроют» и усилят проблемные области.

Например, на рис. 4.1 приведен профиль команды лаборатории по работе с данными компании Nordstrom в 2013 году. Легко можно определить сильнейших математиков и статистиков в команде (Элисса, Марк и Эрин), сильнейших разработчиков (Дэвид и Джейсон В.), а также специалиста по визуализации данных (Джим В., о котором шла речь ранее). Я поинтересовался у директора лаборатории Джейсона Гоуэнса, что он думает насчет расширения команды, на что он ответил: «Во-первых, мы придерживаемся «правила двух пицц» Джеффа Безоса[54], а потому количество членов нашей команды вряд ли сильно изменится. Мы уверены, что такой подход помогает нам сконцентрироваться на том, что нам кажется серьезными возможностями. Во-вторых, каждый член команды привносит в нее что-то уникальное, что помогает расти всем остальным».

Еще в момент формирования команды они поступили весьма мудро, наняв сильного специалиста по визуализации данных, хотя многие другие команды делают этот шаг гораздо позже. Наличие красиво оформленных и подтвержденных концепций, основанных на данных, помогло команде лаборатории утвердить свой авторитет в рамках всей компании. «Джим очень помог нам вызвать интерес к нашей работе у остальных сотрудников, с помощью своих навыков визуализации данных он буквально вдохнул жизнь в то, что мы делаем», — говорит Джейсон.

Как уже отмечалось, профессиональные знания и навыки специалистов по теории и методам анализа данных, которые часто приходят в коммерческий сектор из академической среды, условно можно изобразить в виде буквы «Т». А если у эксперта две основные области специализации — то в виде числа пи (π). Найм новых сотрудников и формирование команд можно назвать «аналитическим тетрисом».

В 2012 году Харрис и др.[55] провели опрос среди нескольких сотен специалистов по работе с данными и разделили их на пять групп по ключевому навыку, как они сами себя охарактеризовали: