×
Traktatov.net » Аналитическая культура. От сбора данных до бизнес-результатов » Читать онлайн
Страница 40 из 163 Настройки

Сатиш — квант в компании Bloomberg в Нью-Йорке. У него глубокие знания в области прикладной математики и проектирования электрических систем, о чем свидетельствует его степень Ph.D. Он пользуется средой R (ggplot2, dplyr, reshape2), языком программирования Python (scikit-learn, pandas) и Excel (для сводных таблиц) для построения самых разных статистических моделей, а затем при помощи C/C++ запускает некоторые из них. Эти модели часто определяют относительную ценность различных категорий активов с фиксированной доходностью. Помимо этого, он выступает в роли внутреннего консультанта, и ему приходится решать самые разные задачи — от кредитных моделей для ценных бумаг с ипотечным покрытием до прогнозирования объема ветровой энергетики в Великобритании. По его словам, «огромный объем финансовых и аналитических данных, доступный для специалистов Bloomberg, беспрецедентен для отрасли. Поэтому нас воодушевляет осознание того, что большинство предлагаемых нами моделей имеют ценность для всех наших клиентов». Одна из сложностей работы с финансовыми данными заключается в том, что у них очень «длинный хвост», и таким образом в моделях необходимо тщательно учитывать эти редкие, нестандартные события.

СПЕЦИАЛИСТЫ ПО ЭКОНОМИЧЕСКОМУ АНАЛИЗУ И ФИНАНСОВЫЕ АНАЛИТИКИ

Специалисты, которые занимаются внутренней финансовой отчетностью, аудиторскими проверками, прогнозированием, анализом эффективности производственной деятельности и так далее. У Патрика степень бакалавра по философии, политологии и экономике, а также опыт работы в качестве специалиста по анализу рынков заемного капитала в компании RBS Securities. Сейчас он занимает позицию менеджера по розничному финансированию и стратегии в компании Warby Parker в Нью-Йорке, где отвечает за планирование и анализ финансов в розничной сети, а также разработку стратегии по открытию новых магазинов. Он проводит много времени, работая с Excel, управляя прибылями и убытками склада и ключевыми показателями результативности (KPIs), разрабатывая модели будущей деятельности, изучая отклонения в моделях и проводя анализ развития рынка. Сегодня Патрик тратит около 60 % рабочего времени на подготовку отчетов, а оставшееся время — на проведение анализа, тем не менее это соотношение увеличивается в пользу времени на аналитическую работу по мере того, как улучшается его знакомство с инструментами бизнес-аналитики в компании и повышаются навыки работы с этими инструментами.

СПЕЦИАЛИСТЫ ПО ВИЗУАЛИЗАЦИИ ДАННЫХ

Это люди с развитым чувством прекрасного, которые создают инфографику, дашборды и другие графические элементы. Кроме того, они могут заниматься написанием программного кода при помощи JavaScript, CoffeeScript, CSS и HTML и работают с библиотеками визуализации данных, такими как D3 (эффективная и красивая библиотека визуализации, описанная в книге Скотта Мюррея Interactive Data Visualization for the Web) и HTML5.

Джим (Джим В., см. рис. 4.1) получил степень магистра в области теории и практики вычислительных систем со специализацией в сфере биоинформатики и машинного обучения. Он работал в компании Garmin, где создавал графические пользовательские интерфейсы для навигационных устройств. После этого в биологическом научно-исследовательском институте он проводил анализ масштабной последовательности данных. Именно тогда он познакомился с библиотекой визуализации данных D3 и начал вести блог, посвященный этой теме, где публикует доступные и понятные руководства для пользователей. Сегодня Джим занимает пост специалиста по визуализации данных и специалиста по теории и методам анализа данных в лаборатории данных корпорации Nordstrom в Сиэтле. В своей работе он использует такие инструменты, как Ruby, Python и среду R (в частности пакеты ggplot2 и dplyr). Он обеспечивает поддержку систем персонализации и рекомендаций, а также осуществляет визуализацию данных. Основными его «клиентами» становятся сотрудники из других подразделений компании. В крупных компаниях иногда могут быть дополнительные специалисты, которые занимаются исключительно подготовкой отчетов или применением определенного инструмента бизнес-аналитики. Другие специалисты могут работать только с инструментами обработки и анализа больших данных, например Hadoop или Spark.