Далее Левин показал, что сахара нуклеиновых кислот могут быть двух типов: рибоза, содержащая только пять атомов углерода вместо шести, как это имеет место в хорошо изученных сахарах, и дезоксирибоза, в которой на один атом кислорода меньше, чем в рибозе. Каждая молекула нуклеиновой кислоты содержит тот или иной сахар, но отнюдь не оба одновременно. Таким образом, различаются два типа нуклеиновых кислот: рибонуклеиновая (РНК) и дезоксирибонуклеиновая (ДНК). Каждая нуклеиновая кислота включает пурины и пиримидины четырех различных типов. В ДНК нет урацила, в ее состав входят А, Г, Ц и Т, в то время как в РНК нет тимина, а только А, Г, Ц и У. Шотландский химик Александр Тодд (род. в 1907 г.) подтвердил данные Левина, синтезировав в 40-х годах различные нуклеотиды.
Вначале биохимики не придали большого значения нуклеиновым кислотам. Хотя и было известно, что белковая молекула связана с различными небелковыми дополнениями, вроде сахаров, жиров, металл- и витаминсодержащих соединений и т. д., считалось, что белок представляет собой основную часть молекулы. Даже после того, как нуклеопротеиды обнаружили в хромосомах и вирусах, биохимики не потеряли уверенности, что нуклеиновые кислоты — это второстепенная часть молекулы.
В 90-х годах прошлого столетия Коссель провел наблюдение, все значение которого стало понятно гораздо позже.
Сперматозоиды почти целиком состоят из тесно лежащих хромосом и содержат химические вещества, несущие полную информацию, благодаря которой потомству передаются отцовские наследственные признаки. Однако Коссель нашел, что белки сперматозоидов значительно проще, чем белки других тканей, в то время как нуклеиновая кислота подобна нуклеиновой кислоте тканей тела. Отсюда с большой вероятностью вытекало, что наследственная информация заключена скорее в неизменных молекулах нуклеиновых кислот спермы, чем в ее чрезвычайно упрощенном белке.
Но вера в молекулу белка еще не была поколеблена, так как результаты исследований 30-х годов говорили о слишком простом, чтобы нести наследственную информацию, строении нуклеиновых кислот, представляющих очень мелкие молекулы, которые состоят только из четырех нуклеотидов.
Поворотным пунктом явились исследования, проведенные в 1944 г. рядом ученых под руководством американского бактериолога Освальда Теодора Эвери (1877–1955), работавших со штаммами пневмококков (возбудителей пневмонии). У части штаммов была гладкая форма (S-штаммы) и наружная оболочка вокруг клетки (капсула), у другой — шероховатая без оболочки (R-штаммы).
По-видимому, у R-штаммов отсутствовала способность синтезировать вещество капсулы. Вытяжка из S-штаммов, добавленная к R-штаммам, превращала последние в S-штаммы. Сама по себе вытяжка не может образовывать капсулы, но, по-видимому, вызывает такие изменения в R-штаммах, которые позволяют бактерии справиться с этой задачей. Вытяжка несет генетическую информацию, необходимую для изменения физических свойств бактерии. Но самая поразительная часть опыта выявилась при анализе вытяжки, которая представляла собой раствор, состоящий исключительно из нуклеиновой кислоты без примеси каких-либо белков. Итак, по крайней мере в этом случае, нуклеиновые кислоты, а не белок были генетическим материалом. С этого момента стало ясно, что именно нуклеиновая кислота — первичная и ключевая основа жизни. А так как в том же, 1944 г, впервые осуществили метод хроматографии на бумаге, то 1944 г., так же как и 1859 г., когда вышло в свет «Происхождение видов», можно справедливо назвать годом величайших биологических событий.