×
Traktatov.net » Как думают великие компании: три правила » Читать онлайн
Страница 159 из 162 Настройки

С учетом этого мы продолжим аналогию с моделированием. Предположим, что мы бросаем гипотетическую «симметричную» трехстороннюю монету k раз, где k – число компаний в строке или столбце. Затем мы оцениваем вероятность попадания m или более смоделированных компаний в одну и ту же ячейку. Мы повторяем этот процесс 10 миллионов раз, вычисляя процент времени, в течение которого m или более моделируемых компаний из k попадают в одну ячейку.

Таким образом, на самом деле мы проверяем, можно ли ожидать, что не меньше чем m компаний из k могут собраться вместе в любой из трех ячеек в строке (или столбце) случайным образом. Итак, приведенные выше значения в % – это вероятности того, что наблюдаемая кластеризация не является случайной («случайной» означает, что все фирмы имеют одинаковую вероятность [p = ⅓] попадания в каждую ячейку). Однако мы не утверждаем, что вся группа выглядит как наша выборка. Скорее мы утверждаем, что судя по нашей выборке, чтобы сделать выгодное вложение, нужно учитывать наличие систематических связей между относительной конкурентной позицией и результатами попарных сравнений.

Так, если у «чудотворцев» при сравнениях со «стайерами» неценовая конкурентная позиция обнаруживается в 6 раз чаще, чем ценовая, то мы не утверждаем, что так обстоят дела и во всей группе. Но мы утверждаем, что вероятность появления соотношения 6:1 в совокупности с равномерным распределением взаимоисключающих вариантов очень мала, и поэтому «чудотворцы» с большей вероятностью должны иметь неценовые конкурентные позиции, нежели ценовые. Это как если бы мы тестировали монету в предположении, что она симметрична, а у нас в семи бросаниях выпало шесть орлов. Вероятность того, что наша «монета» не смещена в сторону неценовой конкурентной позиции, при этом составляет 1,6 %. Мы не можем с уверенностью сказать, что она не имеет такого смещения, но не стали бы держать пари против этого.

Приложение Н. Изменения конкурентной позиции и изменения рентабельности

При исследованиях регрессии (см. главу 3) использовался обычный метод наименьших квадратов (МНК). Как правило, поскольку наши независимые и зависимые переменные – это трехкатегорийные дискретные переменные, можно было бы использовать упорядоченную пробит-модель, так как мы пытаемся оценить вероятность попадания в одну из трех заданных категорий для зависимой переменной (изменение эффективности: негативное, без изменений, позитивное).

Однако для такого анализа необходимо, чтобы каждая независимая переменная имела дисперсию для каждого состояния зависимой переменной. Здесь, к сожалению, «Изменение позиции» = 0 в каждом из пяти примеров, в которых «Изменение эффективности» = 0. В такой ситуации можно получить весьма неточные оценки коэффициентов регрессии и среднеквадратической ошибки.

Для сравнения – МНК позволяет обрабатывать такие данные. При переходе на МНК мы проигрываем в эффективности, поскольку зависимая переменная (изменение эффективности) не непрерывна, а категоризована. Однако предпочтительнее все же использовать этот более консервативный метод, чем получить смещенные оценки с помощью упорядоченного пробит-метода.