×
Traktatov.net » Юный техник, 2012 № 06 » Читать онлайн
Страница 10 из 36 Настройки
, построенного в Лейденском университете (Нидерланды), похвастать успехами тоже не могут.

Детектор представляет собой шар из медно-алюминиевого сплава диаметром 68 см и массой около 1400 кг, резонирующий на колебания с частотой около 3 кГц.

Остается выделить эти колебания из помех и зарегистрировать с помощью сверхпроводящих магнитометров. А вот с этим пока не получается. Чтобы защитить установку от любых сейсмических колебаний, бетонная плита, на которой подвешен шар, опирается на подушки из резины и дерева. А сам подвес состоит из стальных грузов и пружин.

Кроме того, еще больший враг детектора — тепловой шум. Чтобы избавиться от него, MiniGRAIL должен работать при температуре 20 милликельвинов — это на 1/50 градуса выше абсолютного нуля. Для этого вместе с частью подвеса шар помещают в трехслойный термос-дьюар с температурами слоев соответственно 77 К, 4 К и 20 мК.

За каждый час такого криогенного режима из установки испаряется около литра жидкого гелия, а охлаждение полутора тонн металла от комнатной до рабочей температуры занимает более полутора месяцев. А в итоге пока — ничего. С момента начала работ в 2001 году был проведен уже с десяток сеансов наблюдений, и все безрезультатно: гравитационных волн обнаружить до сих пор не удалось.


На связь выходит нейтрино

Быть может, именно потому научная общественность с таким интересом узнала о революционном эксперименте, которые поставили в марте нынешнего года физики из университетов Северной Каролины и Рочестера.

Впервые в мире им удалось провести сеанс связи с помощью субатомных частиц — нейтрино.

Напомним, что нейтрино (в переводе с итальянского «нейтрончик») — частица особая. Это название придумал лауреат Нобелевской премии Энрико Ферми для гипотетической частицы, которая была поначалу открыта на кончике пера швейцарским теоретиком Вольфгангом Паули. Частица, согласно его вычислениям, получилась весьма странной — практически не имеющей электрического заряда, массы покоя и способной пронизывать толщу любого материала… В итоге даже сам Паули пришел в отчаяние. «Частицу с такими свойствами невозможно обнаружить экспериментально!» — воскликнул он однажды.



Устройство и схема охлаждения детектора:

>1 — вход для жидкого гелия температуры 1К; 2 — труба для протекания гелия; 3 — резервуар гелия; 4 — резервуар для азота; 5 — труба для подачи гелия; 6 — труба для транспортировки азота; 7 — помпа для подачи гелия; 8 — труба для выхода газообразного гелия; 9 — резервуар с температурой 4К; 10 — резервуар с температурой 77К; 11 — резервуар с температурой 300К.


Однако Паули, к счастью, ошибся. Нейтрино — даже трех разновидностей — обнаружить все же удалось.

И это несмотря на то, что нейтрино в самом деле может запросто пронизать земной шар, двигаясь почти со скоростью света!

Сигнал первой нейтринной передачи поступил из Национальной лаборатории имени Энрико Ферми, что рядом с Чикаго. Там в мощнейшем ускорителе частиц разогнали протоны и направили на углеродную мишень.

В результате бомбардировки возникли пучки нейтрино высокой плотности, которые были направлены сквозь скалы толщиной 240 метров и нацелены на детектор MINERVA.