Шпигельман брал пробы каждого “поколения” РНК из пробирок и изучал их свойства, в том числе способность инфицировать бактерии. И получил удивительные результаты. Эволюционирующие РНК становились все меньше и одновременно утрачивали способность к инфицированию бактерий. Через 74 поколения от типичной молекулы РНК в пробирке осталась лишь небольшая часть исходного размера “дикого” предка. РНК “дикого” типа представляла собой цепь длиной 3600 “бусин”. Спустя 74 поколения естественного отбора средний обитатель пробирки уменьшился до скромных 550 оснований. Такая молекула уже не годилась для инфицирования бактерий, зато отлично справлялась с инфицированием пробирок.
Произошло вот что. Со сменой поколений в РНК происходили спонтанные мутации, и выжившие мутанты приспосабливались жить в мире пробирок, а не в естественном мире бактерий, которые можно инфицировать. Основное различие предположительно в том, что РНК в пробирках могла обходиться без тех частей кода, которые нужны для синтеза четырех указанных выше белков, необходимых вирусу “дикого” типа для паразитирования на бактериях. И то, что осталось от РНК, было минимумом, нужным для репликации в тепличном мире пробирок, полных Qβ-репликазы и строительных компонентов.
Этот выживший кусочек РНК, размером менее десятой части своего “дикого” предка, стал известен как монстр Шпигельмана. Благодаря небольшому размеру эта экономичная конструкция репродуцируется быстрее, чем конкуренты, и поэтому естественный отбор постепенно увеличивает его численность в популяции (популяция в данном случае – самое верное слово, хотя мы говорим о свободно плавающих молекулах, а не о вирусах или каких-нибудь других организмах).
Поразительно, но “монстр Шпигельмана” снова эволюционирует при повторных проведениях эксперимента. Более того, Шпигельман вместе с Лесли Оргелом, ведущим специалистом в области исследований происхождения жизни, провел дополнительные эксперименты. Ученые добавляли в раствор вредное вещество – бромистый этидий. В таких условиях в растворе эволюционировал другой монстр, устойчивый к бромистому этидию. То есть загрязнение раствора разными химическими веществами способствует эволюции монстров с разной специализацией.
Шпигельман в экспериментах избрал отправной точкой Qβ-РНК “дикого” типа. Манфред Сумпер и Рюдигер Люче из лаборатории Манфреда Эйгена провели другой опыт, также получив удивительные результаты. Они показали, что при определенных условиях в пробирке, в которой нет РНК, а есть лишь компоненты для ее синтеза и фермент Qβ-репликаза, может спонтанно синтезироваться самореплицирующаяся РНК. В подходящих условиях она эволюционирует, превращаясь во что-то вроде “монстра Шпигельмана”. Здесь уместно вспомнить о креационистах, которые боятся (или, лучше сказать, надеются), что крупные молекулы слишком “невероятны”, чтобы появиться в результате эволюции. Сила кумулятивного естественного отбора (и его отличие от слепого случая) такова, что “монстру Шпигельмана” нужно лишь несколько дней, чтобы выстроить себя с нуля.