×
Traktatov.net » 200 занимательных логических задач » Читать онлайн
Страница 36 из 41 Настройки


В зените мы рассматриваем светила из точки А, а у горизонта – из точек В или С. Иллюзия увеличения их размеров у горизонта связана с совершенно другими причинами.


176. Такая проверка недостаточна. Перегибая кусок материи по диагоналям, мы убеждаемся только в том, что все стороны этого четырехугольного куска материи равны между собой. Но среди выпуклых четырехугольников подобным свойством обладает не только квадрат, но и ромб, а последний является квадратом только тогда, когда его углы прямые. Для того, чтобы убедиться еще и в том, что углы при вершинах куска материи прямые, можно перегнуть его по средней линии и посмотреть, совпадают ли углы, прилежащие к одной стороне (у квадрата они совпадают, а у ромба не совпадают).


177. Единицу можно представить в виде суммы двух дробей:



Также единица может быть обозначена следующим выражением:

234567 >9>->8>->1 = 1,

т. к. любое число в нулевой степени равно единице. Наконец, в следующей записи единица выражена всеми десятью цифрами безо всяких знаков математических действий:

123456789>0 = 1


178. Искусство «отгадывания» чисел сводится к составлению и решению простейших уравнений. Задуманное вами число собеседник обозначает как х. Далее, вы производите с этим числом какие-либо математические действия, и те же действия производит в уме с числом х ваш собеседник. Например:



Наконец, собеседник просит вас сообщить ему результат всех операций. Зная его, он быстро составляет и решает простое уравнение и «отгадывает» задуманное вами число. Допустим, результатом вышеуказанных операций было 215. Собеседнику остается решить в уме уравнение 70х + 75 = 215 (из которого 70х = 140, х = 2) и назвать задуманное число.

Фокус можно разнообразить, предложив собеседнику (теперь поменяемся с ним местами) задумать какое-либо число и, не называя его вам, вслух производить с ним те математические действия, какие он пожелает. Например, он говорит вам: «Я задумал число, прибавил к нему 2, результат умножил на 5…» и т. п. Вы же в уме проделываете те же действия с числом х. После этого, он сообщает вам результат своих операций, а вы, быстро составляя и решая в уме простое уравнение, «отгадываете» задуманное им число. (Желательно внести ограничение в совершаемые собеседником математические действия, исключив операцию деления, т. к. она значительно усложнит фокус, т. е. пусть он производит с числом только сложение, вычитание и умножение). Необходимо добавить, что в том случае, когда собеседник производит математические действия сам, может получиться, что из уравнения исчезнет х. Например, на каком-то этапе у вас получается х + 20, а собеседник говорит: «Теперь я отнимаю задуманное число». У вас получается х + 20 – х = 20. В этом случае надо попросить его не называть конечного результата всех операций, который, к удивлению собеседника, сообщаете ему вы.


179.



180. На первый взгляд кажется, что наибольшее число, которое можно выразить тремя любыми цифрами безо всяких знаков действий – это 999. Однако гораздо большие числа обозначаются выражениями 99>9 и 9>99. Но и эти числа будут ничтожно малы по сравнению с тем числовым великаном, который скрывается за записью 9