Хотя методы профессора Габора и мои собственные приводят к построению нелинейных преобразователей, они линейны в том смысле, что выходной сигнал нелинейного преобразователя представляется в них как сумма выходных сигналов комплекта нелинейных преобразователей, на которые подается один и тот же входной сигнал. Указанные выходные сигналы складываются с переменными линейными коэффициентами. Это [c.264] позволяет нам при расчете и задании нелинейного преобразователя применить теорию линейных разложений. В частности, можно разыскивать коэффициенты составляющих элементов методом наименьших квадратов. Если сюда еще добавить метод статистического усреднения по множеству всех входных сигналов, которые могут поступать в наше устройство, то получится, по существу, один из разделов теории ортогональных разложений. Такую статистическую основу для теории нелинейных преобразователей можно получить фактическим изучением прошлых статистик входных сигналов, используемых в каждом частном случае.
Таковы, в общих чертах, методы Габора. Мои методы по существу аналогичны, но статистическая основа моей работы несколько иная.
Хорошо известно, что электрический ток не является непрерывным, а представляет собой поток электронов, подверженный статистическим отклонениям. Эти статистические флюктуации можно описать достаточно хорошо с помощью теории броунова движения или аналогичной теории дробового эффекта (лампового шума), о которых я собираюсь говорить в следующей главе. Во всяком случае, можно создать прибор, производящий стандартный дробовой шум с весьма специфическим статистическим распределением, и такой прибор выпускается промышленностью. Заметим, что ламповый шум является в некотором роде универсальным входным сигналом, поскольку его флюктуации, если брать их за достаточно долгое время, будут рано или поздно приближаться к любой данной кривой. Для лампового шума существует весьма простая теория интегрирования и усреднения.
С помощью статистик лампового шума легко построить замкнутое множество нормальных и ортогональных нелинейных операций. Если входные сигналы, подвергаемые этим операциям, имеют статистическое распределение, присущее ламповому шуму, то среднее произведение выходных сигналов двух составляющих элементов нашего нелинейного преобразователя, взятое по статистическому распределению лампового шума, будет равно нулю. Кроме того, средний квадрат выходного сигнала каждого устройства можно нормировать к единице. [c.265]
Тогда для разложения нелинейного преобразователя общего вида по этим составляющим элементам можно применить известную теорию ортонормальных функций.
Конкретно, наши устройства дают выходные сигналы, представляющие собой произведения многочленов Эрмита от коэффициентов Лагерра для прошлого отрезка входного сигнала. Это подробно изложено в моих «Нелинейных задачах в теории случайных процессов».
Конечно, трудно найти среднее непосредственно по множеству возможных входных сигналов. Эта трудная задача становится разрешимой только потому, что дробовые входные сигналы обладают свойством, которое называется метрической транзитивностью или эргодичностью. Любая интегрируемая функция от параметра распределения дробовых входных сигналов имеет почти во всех случаях среднее по времени, равное среднему по множеству. Вследствие этого мы можем взять два прибора, на которые поступает один и тот же дробовой шум, и найти среднее их произведение по всему множеству возможных входных сигналов путем перемножения их выходных сигналов и усреднения полученного произведения по времени. Для всех этих процессов необходимы лишь операции сложения напряжений, перемножения напряжений и усреднения по времени, для которых имеются соответствующие устройства. Фактически для методики Габора требуются те же устройства, что и для моей методики. Один из его учеников изобрел весьма эффективный и недорогой перемножитель, основанный на пьезоэлектрическом эффекте в кристалле, находящемся в поле двух магнитных катушек.