Конечно, данный способ не подходит для измерения времени нахождения тел в «свободном падении», то есть беспрепятственном падении вниз. Свободное падение с любой разумной высоты закончится слишком быстро, и количество воды, собранной за время падения, слишком мало, чтобы сделать даже приблизительно точные замеры времени.
Поэтому Галилео решил использовать наклонную плоскость. Гладкий шар будет катиться вниз по гладкому углублению на такой плоскости с явно более низкой скоростью, чем двигался бы в свободном полете. Кроме того, если уменьшить наклон этой плоскости к горизонтали, то шар будет катиться все менее и менее быстро; при точно горизонтальной плоскости шар не будет катиться вообще (по крайней мере, из состояния покоя). Этим методом можно замедлить скорость падения до уровня, при котором даже грубые устройства измерения времени начинают выдавать достаточно точные результаты.
Можно спросить: а может ли движение вниз по наклонной плоскости дать результаты, которые справедливо применять и для случая свободного падения? Кажется вполне разумным предположить, что может. Если что-то истинно для любого из углов, под которым находится наклонная плоскость, оно должно быть истинно и для свободного падения, поскольку свободное падение можно рассматривать как качение вниз по наклонной плоскости, максимально отклоненной по отношению к горизонтали, то есть под углом 90 градусов.
Например, можно легко видеть, что достаточно тяжелые шары различных весов катятся вниз по одной и той же наклонной плоскости с одной и той же скоростью. Это правило является истинным для любого угла к горизонтали, под которым отклонена наклонная плоскость. Если плоскость отклонить более резко, шары покатятся быстрее, но все они одинаково увеличат скорость своего движения и в конечном итоге покроют одно и то же расстояние за одно и то же время. Справедливо будет заключить, что свободно падающие тела пролетят равные расстояния за равное время независимо от их веса. Другими словами, тяжелое тело не будет падать более быстро, чем легкое тело, что не соответствует точке зрения Аристотеля.
(Существует известная история о том, что Галилео доказал это, бросив два объекта различного веса с наклонной Пизанской башни, и они ударились о землю одновременно. К сожалению, это — только легенда. Историки совершенно уверены, что Галилео никогда не проводил такого эксперимента, но вот голландский ученый Симон Стевин (1548–1620) производил подобные измерения за несколько лет до экспериментов Галилео. В холодном мире науки, однако, осторожные и исчерпывающие эксперименты вроде тех, что проводил Галилео с наклонными плоскостями, иногда значат больше, чем некоторые сенсационные демонстрации.)
Все же можем ли мы действительно так легко расстаться с аристотелевскими представлениями о движении? Нет никаких сомнений в справедливости утверждения того, что скорости движения шаров по наклонной плоскости равны, но, с другой стороны, не менее справедлив и тот факт, что мыльный пузырь падает гораздо медленнее, чем шарик от пинг-понга того же самого размера, и что шарик от пинг-понга падает гораздо более медленно, чем твердый деревянный шар того же самого размера.