×
Traktatov.net » Популярная физика. От архимедова рычага до квантовой механики » Читать онлайн
Страница 12 из 486 Настройки

Если следовать той же логике рассуждения, которую мы использовали для средних скоростей в течение первых двух секунд, для первых трех секунд и далее мы получим следующие значения скорости: в 0 секунд — 0 фт/с; через одну секунду (в этот момент) — 4 фт/с; через две секунды — 8 фт/с; через три секунды — 12 фт/с; через четыре секунды — 16 фт/с и так далее.

Обратите внимание на то, что после каждой секунды скорость увеличивалась точно на 4 фт/с. Такое изменение скорости со временем называется «ускорением» (от латинских слов, означающих «добавить скорость»). Чтобы определить значение ускорения, мы должны разделить увеличение скорости в течение специфического интервала времени на значение этого интервала времени. Например, если в первую секунду скорость была 4 фт/с, в то время как в четвертую секунду она была равна 16 фт/с, то за время интервала 2 — 3 секунды она возросла на 12 фт/с. Ускорение в этом случае равно: 12 фт/с разделить на три секунды. (Обратите внимание, что в этом случае мы делим не 12 фт/с на 3, а 12 фт/с на 3 секунды. Во всех выражениях, где есть единицы измерения, они должны быть включены в любое математическое преобразование.)

Когда мы делим 12 фт/с на 3 секунды, получаем ответ, в котором единицы измерения так же, как и числовые значения, подвергаются делению, — другими словами, 4 фт/с разделить на с. Это может быть записано в виде 4 фт/с/с (читается «четыре фута в секунду за секунду»). Как мы знаем, и алгебраическом преобразовании a/b разделить на b равно a/b, умноженному 1/b, соответственно окончательный результат равен a/b>2. Теперь преобразуем единицы измерения по тому же принципу, мы получим (4 фт/с)/с , то есть 4 фт/с>2 (читается «четыре фута на секунду в квадрате»).

Как вы можете видеть в данном случае, если посчитаете ускорение для любого временного интервала, ответ будет всегда тот же самый: 4 фт/с>2. Для разных наклонных плоскостей ускорение будет различно в зависимости от степени наклона, но оно останется постоянным (константой) для любой данной наклонной плоскости в любой интервал времени.

Таким образом, мы можем выразить открытие Галилео относительно падающих тел более простым и более наглядным способом. Сказать, что все тела преодолевают равные расстояния за равные промежутки времени, будет правильно; однако это не говорит ничего о том, падают ли тела с равномерными скоростями, равноускоренно или с неравномерными скоростями. Еще раз, если мы говорим, что все тела падают с равными скоростями, мы ничего не говорим относительно того, как эти скорости могут изменяться по времени.

Теперь мы можем сказать, что все тела независимо от веса (мы пренебрегаем сопротивлением воздуха) катятся вниз по наклонным плоскостям или свободно падают с равным и постоянным ускорением. Если сказанное верно, из этого следует неизбежно, что два падающих тела проходят одно и то же расстояние за одинаковое время и что в любой данный момент они падают с одной и той же скоростью (предполагая, что они начали падать в одно и то же время). Это также говорит нам о том, что скорость тел увеличивается со временем и что она увеличивается на постоянную величину.