Это означало, что нейтрино, образующиеся в результате распада пионов на мюоны и нейтрино, являются мюон-нейтрино, особой разновидностью нейтрино, которое может образовывать только мюоны, но никак не электроны. Аналогично обычные нейтрино, образующиеся в связи с электронами и позитронами, являются электрон-нейтрино, и они могут образовывать только электроны или позитроны, но никак не мюоны.
Обозначив мюон-нейтрино как ν>μ а электрон-нейтрино как ν>e, перепишем формулы 14.1–14.6 следующим образом:
В формулах 14.10>–14.13 электронное число сохраняется. В формулах 14.14 и 14.15 вступает в силу закон сохранения мюнного числа. Мюонное число отрицательного мюона и мюон-нейтрино равны +1, а положительного мюона и мюон-антинейтрино равны –1. Как видите, в формулах 14.14 и 14.15 мюонное число и до, и после распада пиона равно 0.
Формула 14.7 описывает взаимодействие с участием и электронов, и мюонов. Мы можем переписать ее как:
В результате такого взаимодействия мюонное число сохраняется: мюонное число исходного отрицательного мюона и образующегося мюон-нейтрино равно +1. Кроме того, сохраняется и электронное число: среди исходных элементов членов семейства электронов нет, поэтому электронное число равно 0, а среди образующихся продуктов есть электрон (электронное число +1) и электрон-антинейтрино (электронное число –1), и их общее электронное число равно 0.
Точно так же распад положительного мюона будет выглядеть следующим образом:
В результате распада положительного мюона образуются позитрон, электрон-нейтрино и мюон-антинейтрино.
В ходе распада отрицательного или положительного мюона не происходит взаимной аннигиляции нейтрино и антинейтрино, так как они не являются античастицами. Взаимная аннигиляция приведет к нарушению законов сохранения электронного и мюонного чисел.
И электрон-нейтрино, и мюон-нейтрино являются безмассовыми незаряженными частицами со спином ½. До сих пор остается загадкой, чем же они отличаются друг от друга.
Рубеж
Были открыты и другие частицы, первая из которых была обнаружена в 1947 году. Все эти частицы, за исключением мюон-нейтрино (его существование не столько открыли, сколько осознали), являются тяжелыми нестабильными частицами и вступают в сильные взаимодействия.
Так, были открыты К-мезоны, или каоны, — целая группа частиц, масса которых в 996,5 раза больше массы электрона, то есть приблизительно равна среднему значению массы протона и пиона. Как и пионы, каоны имеют спин, равный 0, и являются бозонами, также существует положительный каон, являющийся частицей, и отрицательный, являющийся античастицей. Есть еще и чуть менее устойчивый — нейтральный каон, масса которого чуть ниже массы заряженного каона. Однако в отличие от пионов нейтральный каон не является собственной античастицей: существует нейтральный каон и нейтральный антикаон.