×
Traktatov.net » Популярная физика. От архимедова рычага до квантовой механики » Читать онлайн
Страница 480 из 486 Настройки

Так как мюон в 207 раз тяжелее электрона, расстояние от ядра до мюона должно составлять >1/>207 расстояния от ядра до электрона. Это означает, что в тяжелых атомах орбита мюона первого энергетического уровня должна быть внутри ядра! Тот факт, что мюон свободно вращается внутри ядра, доказывает, насколько мала тенденция мюона вступать во взаимодействие с протонами и нейтронами.

Расстояние между мезонными энергетическими уровнями таких мезоатомов намного больше, чем между электронными энергетическими уровнями обычных атомов. Вместо испускаемых и поглощаемых обычными атомами фотонов видимого света мезоатомы испускают и поглощают фотоны рентгеновских лучей.

Мюон является нестабильной частицей, превращающейся в электрон спустя примерно 2,2 с. Однако по субатомным меркам 2,2 с — это довольно долго, поэтому в этом плане мюон не очень-то и отличается от абсолютно стабильного электрона.

В общем, мюон — это не что иное, как «тяжелый электрон». Но почему тяжелый электрон настолько тяжелее обычного, да и почему он вообще существует, до сих пор неясно.


Пион

Хотя мюон и не оказался частицей Юкавы, ее все равно нужно было продолжать искать. В 1947 году английский физик Сесил Пауэлл (1903–1969) поместил в Андах (Боливия) фотопластинки и с их помощью обнаружил среди космических лучей следы мезонов. Эти мезоны были намного тяжелей мезонов Андерсона: их масса была в 273 раза больше массы электрона. Почти как у юкавских частиц.

Оказалось, что они активно взаимодействуют с атомными ядрами, как и должны себя вести юкавские частицы. Частица нового мезона несла положительный заряд, а античастица — отрицательный, как и частицы Юкавы. В конце концов удалось обнаружить и нейтральную разновидность этого мезона, масса которой была чуть ниже массы заряженных частиц (масса незаряженного мезона в 264 раза больше массы электрона).

Новый мезон получил название пи-мезон, или пион. Пион — это и есть та самая частица обмена, о которой говорил Юкава. Нейтроны и протоны состоят из облаков пионов, что было доказано в 1950-х годах Робертом Хофстедтером. Для этого ученый провел бомбардировку нейтронов и протонов электронами, разогнанными в линейном ускорителе до 600 Мэв. Рассеиваясь, электроны проходили сквозь протон, пробивая внешнее облако пионов[143].

Спин пионов отличается от спина других частиц. Значение спина большинства частиц, о которых мы говорили выше, — нейтрино, электрона, мюона, протона и нейтрона, а также их античастиц — равно ½. Частицы с таким нецелочисленным спином ведут себя согласно статистике Ферми — Дирака (математическому анализу, проведенному Ферми и Дираком), почему и получили общее название ферм ионы. Главное отличительное свойство всех фермионов — подчинение правилу запрета (см. гл. 5).

Спин фотона равен 1, а гравитона — 2. Эти и другие частицы с целочисленным спином, включая атомные ядра ряда элементов, ведут себя согласно статистике Бозе — Эйнштейна, разработанной Эйнштейном и индийским физиком Бозе (1904–1974). Такие частицы называются бозонами. Бозоны не подчиняются принципу запрета.