×
Traktatov.net » Активное долголетие (Моя система борьбы со старостью) » Читать онлайн
Страница 28 из 56 Настройки

Такие опыты были поставлены автором. На мышцы (бицепсы) лежащего на кушетке человека были наложены электроды первого отведения электрокардиографа. После отрегулирования изолинии пациент правой рукой поднял груз в 4 килограмма. На прилагаемой диаграмме (рис. 12) видно, что мышца при подъёме груза потеряла заряд по сравнению с неработающей мышцей (движение линии кверху — участок Б — В). Когда был уменьшен груз вдвое, то и потенциал заряда уменьшился вдвое. Когда был снят весь груз, потенциалы мышц правой и левой рук снова уравнялись. Опыт вёлся при сильном уменьшении токов, замеряемых в мышце. Из этого опыта можно сделать вывод, что работа мышцы сопровождается обратно пропорциональным падением в ней свободного отрицательного электрозаряда.

Итак, чем больше разность потенциалов органа человеческого организма и зарядов эритроцитов, тем интенсивнее эритроциты снабжают этот орган кислородом. В спокойном состоянии организма все органы имеют потенциал зарядов несколько ниже зарядов эритроцитов, в том числе и органы, например мозговое вещество, заряженные положительно. Это и обеспечивает беспрерывный электрообмен, обмен веществ и жизнь живых клеток.

Что движет эритроциты

В дополнение к установленным факторам, обеспечивающим движение эритроцитов по капиллярам, надо принять во внимание ещё следующие соображения.

В органах и мышцах человека кровь из артерий распределяется по тончайшим капиллярам, имеющим диаметр в спокойном состоянии около 0,005 сантиметра. Диаметр же эритроцита больше и равен 0,008 сантиметра. Он имеет форму двояковогнутого диска, т.е. похож на бублик без дырки.

На рис. 13 видно, что проникнуть в отверстие капиллярной трубочки диаметром меньше 0,005 сантиметра (за вычетом толщины стенок) круглый эритроцит диаметром 0,008 сантиметра может только будучи сжат стенками кровеносного сосуда в цилиндрик. Такая форма увеличивает наружную площадь соприкосновения эритроцита со стенкой капилляра и усиливает нажим на стенку. Это несомненно способствует переходу кислорода из капилляра в лимфу мышцы. Кислород выжимается словно вода из губки, Эта форма превращает эритроцит в поршень, на который снизу сильно давит артериальная кровь, поступающая в капилляр. Гидродинамические силы не могут обеспечить движение жидкости в таких тонких сосудах вследствие трения. Здесь снова помогает электричество. Силы Кулона заставляют каждый впереди идущий эритроцит отталкиваться от заднего.


Рис. 12. Сравнительная диаграмма разности потенциаловэлектрозарядов в мышцах (бицепсах) рук пациента, поднимающегоправой рукой гирю. Падения потенциала при каждом сокращениисердечной мышцы отмечены пиками.


Рис. 13. Схема капиллярного сосуда (1 — 1) и эритроцита (I—2,3), Он может проникнуть в капилляр, только деформируясь в цилиндрик. Из артерии (II—4) в капилляр поступают эритроциты, неся по шесть (условно) отрицательных зарядов. Сокращённая мышца (II—3), производящая работу, имеет сниженный потенциал, поэтому в неё переходят заряды из эритроцитов. Потеряв заряд, эритроциты слабее отталкиваются друг от друга. Вследствие этого в капилляре скапливается их тем больше, чем сильнее падение потенциала. После расслабления в мышце (