×
Traktatov.net » Найти умного. Как проверить логическое мышление и творческие способности кандидата » Читать онлайн
Страница 64 из 153 Настройки

Но подумайте об этом немного и вы поймете, что это неверное предположение. Предположим, что вы взвесили баночку номер три и весы показали 1027 граммов. Какая часть этого веса приходится на саму баночку? Вы этого не знаете. Вам ведь это не сообщалось. Сколько таблеток в баночке? И этого вы не знаете. Вполне вероятно, что их можно пересчитать, но это будет похоже на попытку мальчишки угадать номер выигрышного лотерейного билета по тем числам, которые были на последнем купленном им трамвайном билете: вы ведь даже не знаете, одинаково ли количество таблеток в разных баночках.

Следовательно, это предположение следует сразу поставить под сомнение. Оно прямо не вытекает из формулировки условия задачи. Если вы его примете, то обнаружите, что вам не хватает информации для решения задачи. Очевидно, вы должны взвешивать таблетки, а не баночки.

Примерно то же самое относится и ко второму предположению о том, что нужно взвешивать таблетки только из одной баночки. Иногда возникает опасная тенденция упрощать проблемы. Проще обдумывать ситуацию, когда все таблетки из одной баночки. Но если вы примете подобное предположение (которое опять-таки не вытекает из условия), то не сможете решить головоломку.

Вы можете быстро прийти к выводу, что использовали неверное предположение. Когда вы взвешиваете таблетки только из одной баночки, есть только два возможных исхода – это могут быть или нормальные, или испорченные таблетки. Допустим, вы решили взвесить десять таблеток из баночки номер три, и весы показали 90 граммов – вам повезло. Очевидно, что таблетки в этой баночке испорчены, и вам достался счастливый билет. Проблема в том, что вам могла попасться и любая из оставшихся четырех баночек. Тогда, взвесив десять таблеток, вы узнаете, что у них нормальный вес – 100 граммов. И у вас не будет ни малейшего представления о том, в какой из остальных четырех баночек испорченные таблетки. И так произойдет в любом случае, если вы будете взвешивать таблетки только из одной баночки. Это сильный довод в пользу того, что для правильного ответа на задачу нужно взвешивать таблетки из нескольких баночек.

Третье предположение – это основная трудность для многих кандидатов на работу в Microsoft (хотя, как ни странно, люди, не занимающиеся программированием, редко попадаются в эту ловушку). Каждый, кто привык размышлять в терминах программирования, приходит к заключению, что результатом единственного взвешивания – неважно, одной таблетки или нескольких – может быть только ответ «да» или «нет». Вес может быть или «нормальным» или «ненормальным».

Это всего один бит информации, а каждый программист знает, что невозможно идентифицировать один из пяти объектов при помощи единственного бита информации. Для этого нужно три бита.

Этот анализ, конечно, бесполезен. Он основан на втором предположении. Вы в реальности получаете ответ «да» или «нет» только если все таблетки идентичны, то есть взяты из одной и той же баночки.

Предварительное обдумывание головоломки часто приводит к выводу, что ее невозможно решить. Неудивительно: хорошая головоломка должна заставлять вас биться головой о стену. Но если посмотреть с другой стороны, невозможность решения может вам помочь. Если данное предположение приводит к заключению, что головоломку невозможно решить, то что-то неверно или в самом предположении, или в логике ваших рассуждений.