×
Traktatov.net » Большое космическое путешествие » Читать онлайн
Страница 265 из 284 Настройки
), нижние (d), странные (s), очарованные (c), прелестные (b) и истинные (t)[43]. Протон состоит из двух верхних кварков и одного нижнего; они удерживаются вместе, обмениваясь тремя глюонами. (Тут есть мнемоническое правило: в нейтроне больше нижних кварков, и слова «нейтрон» и «нижний» начинаются с «н»; в протоне же больше верхних кварков, и слова «протон» и «верхний» содержат в первом слоге букву «р» – латинскую «p».) Нейтрон состоит из двух нижних кварков и одного верхнего кварка, они также удерживаются вместе тремя глюонами. Верхний кварк имеет электрический заряд +2/3, а нижний – заряд –1/3. Таким образом, электрический заряд протона равен +1, а нейтрон нейтрален, его заряд 0.

На отметке 3 минуты начинается синтез гелия, рассмотренный в главе 15. Вселенная уже остыла настолько, что протоны могут сцепляться с нейтронами и образовывать легкие элементы. Наиболее легкий из распространенных элементов – это водород (протон), но кроме того, синтезируется заметное количество гелия, а также небольшие количества дейтерия и лития. Исследуя именно эту эпоху, Гамов и его ученики спрогнозировали существование РИ.

На отметке 380 тысяч лет Вселенная остывает примерно до 3000 К. К этому моменту электроны могут связываться с протонами и образовывать атомы водорода. Как я уже говорил, этот процесс называется рекомбинацией. Вселенная превращается из электрически заряженной плазмы, состоящей в основном из протонов (+) и электронов (—), в электрически нейтральный газ, преимущественно водород: здесь каждый протон успел захватить себе электрон и образовать электрически нейтральный атом водорода. До наступления этой эпохи фотоны постоянно сбивались с траектории, взаимодействуя с электрически заряженными частицами, то есть протонами и электронами, перемещаясь хаотичной «походкой пьяницы». Далеко улететь такие фотоны не могли, поскольку постоянно сбивались с курса. После эпохи рекомбинации фотоны смогли беспрепятственно пролетать по прямой большие расстояния. Благодаря такому переходу к свободным фотонам, эту эпоху мы уже можем непосредственно наблюдать: от нее и осталось реликтовое излучение.

На отметке 1 миллиард лет должно было начаться формирование галактик. Квазары с большим красным смещением, рассмотренные в главе 16, возникли в молодых галактиках, которые заметны в чуть более ранний период.

Сегодня Вселенной 13,8 миллиарда лет.

К отметке 22 миллиарда лет Солнце покинет главную последовательность звезд и станет белым карликом. Галактика Туманность Андромеды столкнется с галактикой Млечный Путь.

К отметке 850 миллиардов лет Вселенная остынет до постоянной температуры в ходе процесса, описанного Гиббонсом и Хокингом. Как я рассказывал в главе 23, согласно наблюдениям, Вселенная наполнена темной энергией, давление которой равно по величине плотности энергии, но является отрицательным (динамически эквивалентно космологической постоянной Эйнштейна). По мере того как материя во Вселенной становится все более разреженной в результате расширения, а уровень темной энергии тем временем остается прежним, Вселенная все сильнее попадает под влияние темной энергии, и этот процесс продолжится в будущем. Следовательно, геометрия Вселенной в будущем должна напоминать геометрию деситтеровского пространства, пространственно-временную воронку. Она должна вечно расширяться. Две галактики, между которыми сегодня возможна связь, будут все быстрее и быстрее разлетаться в стороны. В конце концов пространство между галактиками станет расширяться так быстро, что свет не сможет преодолеть постоянно растущее расстояние между ними. Возникнут горизонты событий. Далекая галактика будет выглядеть в точности так, словно она падает в черную дыру. Если инопланетяне из далекой галактики пошлют нам сигнал «ДЕЛА ИДУТ ВПОЛНЕ ХОРОШО», то нам покажется, что они послали «ДЕЛА И…Д…У…Т…». Конец сообщения, «ВПОЛНЕ ХОРОШО», мы никогда не получим. События, которые произойдут в далекой галактике в последующие времена, окажутся за пределами нашего горизонта и мы их никогда не увидим (см. рис. 23.2).