Все это звучит странно. Как можно получить бесконечное количество вселенных, каждая из которых в конечном счете бесконечно велика, – из конечного исходника? Деситтеровское пространство напоминает обычную трубу, раструб которой направлен вверх. Горизонтальный срез, проходящий через талию деситтеровского пространства у устья трубы, – это круг. Это маленькая конечная вселенная, вписанная в 3-сферу, у нее конечная окружность и конечный объем, как та, которую рассматривал Эйнштейн. Но верхняя часть трубы напоминает по форме конус, а конус можно нарезать кругами, гиперболами или параболами, в зависимости от того, как резать. Если нарезать деситтеровское пространство по горизонтали, получается круг – это вселенная, вписанная в 3-сферу. Если резать под углом 45°, то получается парабола и бесконечная плоская вселенная. Если нарезать вертикальной плоскостью, то получается гипербола – бесконечная вселенная с отрицательной кривизной. История напоминает старую притчу о трех слепцах и слоне. Первый слепец щупает хобот и говорит, что слон похож на змею. Другой щупает ногу и говорит, что слон похож на ствол дерева. Третий щупает бок и говорит, что слон напоминает стену. Аналогично, форма деситтеровского пространства зависит от того, как его сегментировать. Можно сделать во вселенной-пузырьке такой гиперболический сегмент, который будет простираться до бесконечности, обозначить эпоху, в которую заканчивается существование деситтеровского вакуума и энергия сбрасывается в виде частиц, после чего начинается фридмановская модель. Вспомните буханку, которую можно резать на ломтики разной формы – прямоугольные или треугольные. В данном случае реальна лишь сама буханка. Если рассмотреть пространственно-временную геометрию деситтеровского пространства для инфляционной модели, то выясняется, что оно начинается в виде конечной 3-сферной вселенной на талии и вечно расширяется, приобретая бесконечный объем. Такая замечательная геометрия пространства-времени, где инфляция продолжается вечно и пространство становится бесконечно велико, позволяет создать бесконечное количество бесконечных пузырьковых Вселенных в вечно расширяющемся море.
Рис. 23.3. Пузырьковые вселенные, образующиеся в инфлирующем море, – Мультивселенная. Иллюстрация предоставлена Дж. Ричардом Готтом, адаптирована из Time Travel in Einstein’s Universe, Houghton Mifflin, 2001
В разных пузырьковых вселенных могут действовать различные законы физики, если считать, что разные пузыри соответствуют туннелированию и скатыванию в разные долины космического ландшафта, причем значения различных физических полей от долины к долине могут отличаться. Законы физики, действующие в нашей Вселенной, могут оказаться лишь локальными «нормативными актами», что подчеркивают в своих работах Андрей Линде и Мартин Рис.
Важное свойство деситтеровской инфляционной модели таково: она должна начинаться с талии. Нам не нужен этап бесконечного сжатия, предшествующий талии. Борде и Виленкин продемонстрировали почему: на этапе сжатия также будут формироваться пузырьки и, следовательно, пузырьки будут расширяться в сжимающемся пространстве: сравнительно неплотные пузыри будут сливаться друг с другом и заполнять пространство. В результате получится инфлирующее море, которое так и не достигнет талии, а значит, не перейдет к этапу расширения. Возникнет просто сингулярность Большого схлопывания; пузырьки не будут обладать достаточной отрицательной энергией, чтобы на талии процесс пошел вспять. Итак, Борде и Виленкин пришли к выводу, что инфлирующая Мультивселенная начинается с конечного участка инфлирующего моря. Он может быть миниатюрным, всего 3 × 10