Таким образом, знак кривизны нашей Вселенной на самом деле неизвестен. Просто кривизна настолько мала, что ее не удается измерить. Согласно современным данным, видимая Вселенная является плоской с точностью чуть выше 1 %. Аналогично, баскетбольная площадка выглядит плоской, хотя мы и знаем, что она вписывается в кривизну Земли. Просто радиус Земли настолько превышает длину баскетбольной площадки, что ее кривизна практически незаметна. Как известно, в древности Земля считалась плоской, поскольку любой доступный для наблюдения участок Земли был настолько мал, что казался приблизительно плоским. Нам известно, что радиус кривизны Вселенной гораздо больше 13,8 миллиарда световых лет – расстояния, за которое мы не можем заглянуть. Гут подчеркивал: неважно, какова была изначальная форма Вселенной (положительной или отрицательной была ее кривизна); в любом случае, инфляция – простейшая модель, обеспечивающая расширение Вселенной до значительно больших масштабов, нежели у наблюдаемой нами части пространства. Гут предположил, что Вселенная окажется приблизительно плоской, – и был прав. Если наша Вселенная является пузырьковой, это попросту означает, что инфляция долгое время продолжалась внутри пузырька, пока состояние вакуума катилось вниз по склону после туннелирования. «Длительный» период инфляции, скажем 1000 удвоений в размере, мог уложиться всего в 10>–35 с, если на каждый акт удвоения уходило 10>–38 с. В таком случае современный радиус Вселенной должен в 10>274 раз превышать размеры той ее части, которую мы можем наблюдать. Естественно, она должна казаться плоской.
В современных космологических моделях есть два определяющих параметра: Ω>mи Ω>Λ. От значений этих параметров зависит история расширения Вселенной, а также тот факт, конечна Вселенная (в форме 3-сферы) или бесконечна. Первый параметр определяет плотность материи и вычисляется по формуле Ω>m = 8πG>m/3H>0>2, где G – гравитационная постоянная Ньютона, ρ>m – средняя плотность материи в современной Вселенной (речь как об обычной, так и о темной материи), а H>0 – современная постоянная Хаббла, указывающая скорость расширения Вселенной. Числитель (8πGρ>m) описывает плотность Вселенной (силу гравитационного притяжения), а знаменатель (3H>0>2) – кинетическую энергию расширения. В простых фридмановских моделях, учитывающих только обычную материю, Ω>m сообщает, будет ли Вселенная расширяться вечно; если Ω>m > 1, то гравитационное притяжение пересилит кинетическую энергию расширения и Вселенная рано или поздно схлопнется: здесь речь идет о 3-сферном фридмановском пространстве-времени, похожем на мяч, описанный на рис. 22.5. Если Ω>m < 1, то кинетическая энергия расширения превосходит гравитационное притяжение. В таком случае у нас получается фридмановская Вселенная с отрицательной кривизной, которая расширяется вечно. Если Ω>m = 1, то кинетическая энергия уравновешивает притяжение и модель получается плоской; расширение постепенно замедляется, плотность снижается, а кинетическая энергия расширения ослабевает. Все эти фридмановские модели характеризуются Ω