Если попытаться проследить гравитационное воздействие Солнца, то складывается более тонкая ситуация. Солнечная гравитация сообщает одинаковое ускорение всем телам на Земле – вам, книге, которую вы держите, яблоку на ладони. Все мы вращаемся по околосолнечной орбите свободного падения. Нам только кажется, что мы неподвижны; просто мы не замечаем этого движения, равно как не замечаем и ускорения.
Но факт остается фактом: Земля вращается вокруг Солнца с ускорением, и это ускорение вычисляется по формуле v>2/r. Далее Ньютон применил третий закон Кеплера, чтобы определить, как сообщаемое Солнцем ускорение изменяется в зависимости от радиуса. Период орбитального вращения планеты (P) равен
P = (2πr/v);
следовательно, орбитальный период вычисляется как расстояние, проходимое планетой по орбите (2πr), деленное на скорость (v). Таким образом:
P пропорционально r/v и
P>2 пропорционально r>2/v>2.
Кеплер установил, что P>2 пропорционально a>3, где a — большая полуось планетной орбиты. В данном случае земная орбита почти круговая, поэтому можно приблизительно взять r = a. В таком случае, подставив r вместо a, находим:
P>2 пропорционально r>3.
ПосколькуP>2 также пропорционально r>2/v>2,
r>2/v>2 пропорционально r>3.
Разделив на r, получаем:
r/v>2 пропорционально r>2.
Обратив это выражение, находим, что
v>2/r (ускорение) пропорционально 1/r>2.
При помощи таких рассуждений, третьего закона Кеплера и элементарной алгебры мы показали, что гравитационное ускорение, сообщаемое Солнцем другому телу, удаленному от него на расстояние r, обратно пропорционально квадрату этого расстояния; это и есть ньютоновский «закон обратных квадратов». Вот как его сформулировал сам Ньютон:
…в это время я был в расцвете моих изобретательских сил и думал о математике и философии больше, чем когда-либо после. Из правила Кеплера о том, что периоды планет находятся в полуторной пропорции к расстоянию от центров их орбит, я вывел, что силы, удерживающие планеты на их орбитах, должны быть в обратном отношении квадратов их расстояний от центров, вокруг коих они вращаются.
Такие представления о гравитации Ньютон также применил к Земле и Луне. Вспомните знаменитое упавшее яблоко, вдохновившее Ньютона. Оно расположено на расстоянии одного земного радиуса от центра Земли и падает на Землю с ускорением 9,8 м/с>2. Луна расположена на расстоянии 60 земных радиусов от центра Земли. Если сила тяготения Земли убывает в пропорции 1/r>2 (как и у Солнца), то на лунной орбите земное притяжение должно давать ускорение в (60)>2 раз меньше тех 9,8 м/с>2, которым равно ускорение свободного падения на поверхности Земли, то есть около 0,00272 метра в секунду за секунду.
Точно как и в случае с вращением Земли вокруг Солнца, можно рассчитать ускорение Луны, вращающейся вокруг Земли, взяв период вращения (27,3 дня) и радиус лунной орбиты (384 000 километров). Подставив эти числа в формулу