×
Traktatov.net » Занимательный космос. Межпланетные путешествия » Читать онлайн
Страница 42 из 111 Настройки

1. Какой заряд пороха необходим ракете, предназначаемой для переброски бомбы в 50 кг весом с максимальной скоростью 500 м/с?

Пусть скорость вытекания пороховых газов из дюзы равна 1000 м/с. Если искомый заряд х, то по формуле Циолковского:

Легко вычислить, что х = 30 кг. При скорости вытекания пороховых газов 2000 м/с достаточен для этого еще меньший заряд – 14 кг.

2. Какой заряд необходим для переброски одной тонны полезного груза с Земли на Луну?

Чтобы долететь до Луны с наименьшим расходом горючего, ракета должна быть снабжена запасом энергии, отвечающим скорости 12 240 м/с (см. Приложение 4). Возьмем наибольшую скорость вытекания пороховых газов, 2400 м/с, и составим уравнение:

Отсюда × = 159. Заряд должен составлять 159/160 веса ракеты; на всю долю полезного груза остается 0,6 % общего веса. Излишне говорить, что это конструктивно неосуществимо.

Пользуясь же жидким горючим, со скоростью вытекания газов 4000 м/с, мы получаем гораздо более благоприятные соотношения:

откуда × = 19. Заряд составляет 19/20 общего веса, и на долю полезного груза приходится уже 5 %.

Читателю должна быть понятна теперь та задача, которую поставили перед собой работники звездоплавания на нынешнем этапе его развития: во что бы то ни стало изобрести ракету с жидким зарядом. Будущее имеют только такие ракеты; без них заманчивые цели звездоплавания никогда не будут претворены в действительность. В дальнейших главах мы побеседуем о результатах этих изобретательских стремлений.

Перейдем теперь к следующему пункту механики реактивного движения. Как вычислить силу, с какой продукты горения давят на ракету? Для этого достаточно знать количество ежесекундно потребляемого горючего и скорость вытекания газов. Расчет основан на элементарных положениях динамики. По закону противодействия, количество движения (тс), присущее вытекающим газам, в каждый момент равно количеству движения ( Mv ) самой ракеты. Последнее же равно импульсу силы, увлекающей ракету ( Ft = Mv). Значит (считая t = 1с), имеем, что искомая сила напора на ракету равна

F= тс,

где т — масса ежесекундно потребляемого горючего, ас — секундная скорость газовой струи. Если, например, ракета сжигает 160 г бензина в секунду, а продукты сгорания вытекают со скоростью 2000 м/с = = 200 000 см/с, то сила напора на ракету (или сила тяги) составляет

160 × 200 000 = 32 000 000 дин = около 32 кг.

Нам предстоит еще рассмотреть вопрос о влиянии силы тяжести на полет ракеты. До сих пор мы вели расчеты в предположении, что земная тяжесть на ракету не действует. Вспомним, однако, что под влиянием земной тяжести все тела близ поверхности Земли падают с секундным ускорением около 10 м/с. Отсюда прямо следует, что если ракета должна в среде без тяжести получить движение отвесно вверх с секундным ускорением 40 м/сек, то, взлетая от Земли, она получит ускорение всего в 30 м/с2. Далее, если собственное ускорение ракеты меньше ускорения земной тяжести, то такая ракета вовсе не будет подниматься на Земле, как бы долго ни продолжалось горение и сколько бы горючего ни было израсходовано. Наконец в случае