Вот несколько особых случаев для множителей первой сотни:
20 = 10 × 2
22 = 11 × 2
25 = (100: 2): 2
26 = 25 + 1
27 = 30 – 3
32 = 22 + 10
42 = 22 + 20
43 = 33 + 10
45 = 50 – 5
63 = 33 + 30 и т. д.Легко видеть, между прочим, что с помощью счетов очень удобно умножать на такие числа, как на 22, 33, 44, 55 и т. п., а потому следует стремиться при разбивке множителей пользоваться подобными числами с одинаковыми цифрами. К сходным приемам прибегают и при умножении на числа, большие 100. Если искусственные приемы утомительны, мы всегда можем умножить с помощью счетов по общему правилу, умножая каждую цифру множителя и записывая частные произведения – это все же дает некоторое сокращение времени.
Деление на счетах
Выполнять деление с помощью конторских счетов гораздо труднее, чем умножать; для этого нужно запомнить целый ряд особых приемов, подчас довольно сложных. Интересующимся ими придется обратиться к специальным руководствам. Здесь же укажу лишь, для примера, удобные приемы деления с помощью счетов на числа первого десятка (кроме числа 7, способ деления на которое чересчур сложен).
Как делить на 2, мы уже знаем – способ этот очень прост.
Гораздо сложнее прием деления на 3: он состоит в замене деления умножением на бесконечную периодическую дробь 3,3333… (известно, что 0,333… = 1/3). Умножать с помощью счетов на 3 мы умеем; уменьшать в 10 раз – тоже несложно: надо лишь переносить делимое одной проволокой ниже. После не долгого упражнения этот прием деления на 3, на первый взгляд такой сложный, оказывается на практике довольно удобным.
Деление на 4, конечно, заменяется двукратным делением на 2.
Еще проще деление на 5: его заменяют делением на 10 и удвоением результата.
На 6 делят с помощью счетов в два приема: сначала делят на 2, потом полученное делят на 3.
Деление на 7, как мы уже сказали, выполняется помощью счетов чересчур сложно, и потому мы излагать его не будем.
На 8 делят в три приема: сначала делят на 2, потом полученное вновь на 2, и затем еще раз на 2.
Очень интересен прием деления на 9. Он основан на том, что 1/9 = 0,1111… Отсюда ясно, что, вместо деления на 9, можно последовательно складывать 0,1 делимого + 0,1 его + 0,001 его и т. д. [10] .
Всего проще, как видно, делить на 2,10 и 5 – и, конечно, на такие кратные им числа, как 4, 8, 16, 20, 25, 40, 50, 75, 80,100. Эти случаи деления не представляют трудности и для малоопытного счетчика.
Отголоски старины
С отдаленными предками наших русских счетов связаны некоторые пережитки старины в языке и обычаях. Мало кто подозревает, например, что, завязывая «для памяти» узелок на носовом платке, мы повторяем то, что некогда с большим смыслом делали наши предки, «записывая» таким образом итог счета на шнурках. Веревка с узлами представляла собой счетный прибор, в принципе аналогичный нашим счетам и, без сомнения, связанный с ними общностью происхождения: это – «веревочный абак».
С абаком же связаны и такие распространенные теперь слова, как «банк» и «чек». «Банк» по-немецки означает скамья. Что же общего между финансовым учреждением, «банком» в современном смысле слова, и скамьей? Оказывается, что здесь далеко не простое совпадение. Абак в форме скамьи был широко распространен в деловых кругах Германии в XV–XVI веках; каждая меняльная лавка или банкирская контора характеризовалась присутствием «счетной скамьи» – и естественно, что скамья стала синонимом банка.