×
Traktatov.net » Наука Плоского мира. Книга 2. Глобус » Читать онлайн
Страница 12 из 209 Настройки

История эта вот о чем. Углерод появился на гигантских красных звездах в результате довольно тонкого процесса ядерного синтеза, получившего название тройная гелиевая реакция. При этом процессе происходит слияние трех ядер гелия[8]. Ядро гелия содержит два протона и два нейтрона. При слиянии трех ядер получается шесть протонов и шесть нейтронов. Это и есть ядро углерода.

И все бы хорошо, да только шансы на тройное столкновение внутри звезды ничтожно малы. Гораздо чаще случаются столкновения двух ядер гелия, но и они бывают относительно нечасто. А третье врезается в два других уже слившихся ядра чрезвычайно редко. Это как в случае с волшебниками и шарами с красками. Шары шмякаются в волшебников довольно часто, но вряд ли бы вы много поставили на то, что второй шар попадет в него в тот же самый момент. А это означает, что синтез углерода должен происходить не одним махом, а пошагово, способом слияния сначала двух ядер, а затем присоединения к ним третьего.

В первом шаге нет ничего сложного: в результате получается четыре протона и четыре нейтрона, то есть одна из форм бериллия. Однако эта форма существует всего 10>-16 секунды, и третьему ядру гелия очень тяжело успеть за это время. Шанс попадания в цель невероятно мал, из чего вытекает, что вселенная не просуществовала столько времени, за которое могла быть образована хотя бы малая часть ее углерода. Значит, способ тройного слияния исключается, и углерод остается загадкой.

Разве что… здесь может быть лазейка. И да, она действительно имеется. Слияние бериллия с гелием, в результате которого получается углерод, будет происходить гораздо быстрее и создавать значительно больше углерода за меньший отрезок времени, если энергия этого углерода будет близка к сумме энергий бериллия и гелия. Такое приблизительное равенство энергий называется резонансом. В 1950-х годах Фред Хойл утверждал, что углерод должен был все-таки откуда-то взяться, и предсказал существование резонансного состояния атома углерода. Он должен был обладать особой энергией, которая, по его расчетам, составляла бы около 7,6 МэВ[9].

Не прошло и десятка лет, как было установлено, что действительно существует такое состояние, при котором энергия равна 7,6549 МэВ. К сожалению, сумма энергий бериллия и гелия оказалась примерно на 4 % выше этой величины, а для ядерной физики такая погрешность огромна.

Ай-яй-яй!

Но чудесным образом выяснилось, что очевидная разница была именно тем, что нужно. Почему? Потому что дополнительная энергия, которую обеспечивали температуры, обнаруженные внутри красного гиганта, как раз заменяла в сумме энергий ядер бериллия и гелия те недостающие 4 %.

Вот так вот!

Эта чудесная история принесла Хойлу множество заслуженных научных очков. Но из-за нее же наше существование теперь кажется довольно хрупким. Если бы фундаментальные постоянные нашей вселенной изменились, то же самое случилось бы и с жизненно важной величиной 7,6549. Тут так и хочется сделать вывод, что постоянные нашей вселенной привязаны к углероду, что делает его по-настоящему особенным элементом. А еще хочется отметить, что такая привязка была взята, чтобы зарождение сложных форм жизни стало неизбежным. Хойл не стал делать таких выводов, однако искушению поддались многие другие ученые.