×
Traktatov.net » Аналитическая культура. От сбора данных до бизнес-результатов » Читать онлайн
Страница 33 из 163 Настройки

Документация

Предпочтение следует отдавать источникам, способным предоставить документацию. Обычно стоит поинтересоваться, как осуществляется сбор данных (чтобы понять, насколько они надежны и представляют ли они ценность для компании) и есть ли словарь данных (в нем указываются поля, тип данных, примеры значений и другая важная бизнес-логика, включенная в значения этих полей; см. табл. 3.2). Рэндалл Гроссмен, CDO корпорации Fulton Financial, заметил: «Словарь данных, которому можно доверять, — это самое важное, что CDO может предложить бизнес-пользователям».


Таблица 3.2. Пример словаря данных из проекта в области здравоохранения в Калифорнии


Объем

Сможете ли вы обеспечить хранение большого объема данных? При этом ценные наборы данных не обязательно бывают большими. Например, почтовый индекс для расчетной рыночной территории (то есть территории охвата конкретного региона телевещанием, по оценке компании Nielsen Company) может иметь всего 41 тыс. строк, но эти данные могут быть очень полезны команде специалистов по маркетингу, оценивающей расходы на телевизионную рекламу.


Степень детализации

Подходят ли данные для анализа того уровня, который вам необходим?

Благодаря качественному словарю становится понятно, как определяются данные, в каком формате и с какими допустимыми значениями. В данном случае также очевидно, как эти данные используются программным обеспечением. Приведены несколько строк из eHARS[44] (Enhanced HIV/AIDS Reporting System — Улучшенная система сбора информации о ВИЧ/СПИДе) в Калифорнии. (SAS — статистический набор приложений, активно применяющийся в области медицины.)

Сколько стоит набор данных?

Посчитать, во сколько вам обходятся данные, относительно легко. Можно проанализировать величину прямых расходов на хранение (например, стоимость услуг Amazon Web Services), стоимость сервисов резервного копирования, зарплаты сотрудников, обеспечивающих хранение и управление данными, а также их непроизводственные расходы, плюс стоимость приобретения данных (если актуально). При этом компания с управлением на основе данных должна определить ценность этих данных для бизнеса. Какова их ROI? А вот это уже не так просто.

Д’Алессандро и др.[45] предложили фреймворк, позволяющий оценить прямую рентабельность инвестиций ROI в долларах, по крайней мере в определенных ситуациях. Они работают в сфере рекламы и разработали прогнозные модели для вычисления, какие рекламные объявления эффективнее всего показывать каждому пользователю. Они получают деньги только за переход пользователя по рекламному объявлению. При этом сценарии результат и выручка очевидны: они получают, скажем, 1 долл., если пользователь переходит по рекламному объявлению, и 0 долл., если пользователь ничего не делает. У них есть собственный набор данных, на основании которых они строят свои модели. Некоторые из них — ретроспективные, взятые на основе действовавших ранее цен, а некоторые были ими приобретены в прошлом (их относят к категории невозвратных затрат). Вопрос, которым они руководствуются: «Какова рентабельность моделей, построенных на наших собственных данных, по сравнению с моделями, построенными на данных от третьих лиц?» Для этого требуется определить три компонента: