×
Traktatov.net » Аналитическая культура. От сбора данных до бизнес-результатов » Читать онлайн
Страница 156 из 163 Настройки

При этом на протяжении всей книги я приводил результаты разных исследований, свидетельствующие, что управление на основе данных окупается. Компаниям удается принимать решения быстрее и эффективнее и быстрее внедрять инновации. Компании, проводящие больше тестов, не только знают, когда что-то сработало, но и, скорее всего, знают, почему это произошло. Компании отличаются более высоким уровнем открытости, и любой сотрудник может внести свой вклад и увидеть, как это отразится на эффективности компании.

Дополнительная литература

Аналитика

Aiken P. and Gorman M. The Case for the Chief Data Officer (New York: Morgan Kaufmann, 2013).

Davenport T. H. and Harris J. G. Analytics at Work (Boston: Harvard Business Press, 2007).

Davenport T. H., Harris J. G. and Morison R. Competing on Analytics (Boston: Harvard Business Press, 2010)[271].

Eckerson W. Secrets of Analytical Leaders: Insights from Information Insiders (Denville, NJ: Technics Publications, 2012).

Анализ данных

O’Neil C. and Schutt R. Doing Data Science (Sebastopol, CA: O’Reilly, 2014).

Shron M. Thinking With Data (Sebastopol, CA: O’Reilly, 2014).

Siegel E. Predictive Analytics (Hoboken: John Wiley & Sons, 2013)[272].

Silver N. The Signal and the Noise (New York: Penguin Press, 2012)[273].

Принятие решений

Kahneman D. 2011. Thinking, Fast and Slow. Farrar, Straus & Giroux, New York. Data Visualization[274].

Визуализация данных

Few S. Now You See It (Oakland: Analytics Press, 2009).

Few S. Show Me the Numbers: Designing Tables and Graphs to Enlighten (Oakland: Analytics Press, 2012).

Tufte E. R. Envisioning Information (Cheshire, CT: Graphics Press, 1990).

Tufte E. R. Visual Explanations (Cheshire, CT: Graphics Press, 1997).

Tufte E. R. The Visual Display of Quantitative Information (Cheshire, CT: Graphics Press, 2001).

Wong D. M. The Wall Street Journal Guide To Information Graphics (New York: W. W. Norton & Company, 2010).

A/B-тестирование

Siroker D. and Koomen P. A/B Testing (Hoboken: John Wiley & Sons, 2013).

Приложение А. О необоснованной эффективности данных: почему больше данных лучше?

* * *


Данное приложение воспроизводится (с небольшими изменениями и исправлениями) на основе публикации в авторском блоге[275]. Заголовок публикации сохранен.


В научной работе The Unreasonable Effectiveness of Data («Необоснованная эффективность данных»)[276] авторы, все сотрудники компании Google, утверждают, что происходит интересная вещь, когда массивы данных попадают в вычислительную инфраструктуру (web scale[277]):

Простые модели на основе большого объема данных значительно выигрывают у более сложных моделей на основе меньшего объема данных.

В этой научной работе и более подробной лекции, прочитанной Норвигом[278], авторы демонстрируют: когда размер обучающей выборки доходит до сотен миллионов или триллионов примеров, очень простые модели способны быть эффективнее более сложных, основанных на тщательно разработанных онтологиях, но на меньшем объеме данных. К сожалению, авторы практически не предоставляют объяснений, почему больше данных лучше. В этом приложении я хочу попытаться найти ответ на этот вопрос.