72. Как видим по условию, для получения оранжевой краски требуется в 3 раза больше желтой краски, чем красной: 6: 2 = 3. Значит, из имеющегося количества желтой и красной красок надо взять в 3 раза больше желтой краски, чем красной, т. е. 3 грамма желтой и 1 грамм красной. Можно получить 4 грамма оранжевой краски.
73. См. рис. 62.
Можно убрать и другие 2 спички.
74. Надо поставить запятую: 5 < 5, 6 < 6.
75. Сначала надо выяснить, каков общий возраст всех игроков команды: 22 · 11 = 242. Возраст выбывшего игрока примем за х. После того как он выбыл, общий возраст игроков команды стал равен 242 – х. Поскольку игроков стало 10 и их средний возраст известен (21 год), можно составить следующее уравнение:
(242 – х): 10 = 21,
242 – х = 210,
х = 242–210 = 32.
Выбывшему игроку 32 года.
76. Рассуждение, конечно же, неверно. Эффект его внешней правильности достигается благодаря употреблению понятия «возраст отца» в двух разных смыслах: возраст отца как возраст человека, который является этим отцом, и возраст отца как число лет отцовства. Кстати, во втором значении понятие возраст, как правило, не употребляется: обычно под словосочетанием возраст отца понимается возраст этого человека, а не что-либо иное.
77. Сначала надо разделить 24 килограмма гвоздей на две равные части по 12 килограммов, уравновесив их на чашах весов. Затем так же разделить 12 килограммов гвоздей на две равные части по 6 килограммов. После этого отложить одну часть, а другую разделить таким же способом на части по 3 килограмма. Наконец к шестикилограммовой части гвоздей добавить эти 3 килограмма. В результате получится 9 килограммов гвоздей.
78. Это был четверг. В этот день Петр правдиво сказал, что вчера (т. е. в среду) он лгал, а Иван солгал насчет того, что вчера (т. е. в среду) он лгал, ведь по условию в среду он говорит правду.
79. Это число 147.
80.
81. В 1001 раз. Для того чтобы установить это, надо шестизначное число, полученное путем дублирования трехзначного числа, разделить на это трехзначное число. Получится 1001 (см. также задачу 51).
82. Ошибка данного рассуждения заключается в утверждении, что если бы не было времени, то не было бы ни одного дня, а значит, всегда стояла бы ночь. Как раз наоборот – если бы не было времени, то не могло бы быть ни одного дня и ни одной ночи, ведь понятие ночи (как и понятие дня) относится именно ко времени (и день, и ночь – это некие временные интервалы).
83. Примем число яблок, которые взяла Настя из первой корзины, за х, тогда в первой корзине осталось (12 – х) яблок. Именно столько яблок и взяла Маша из второй корзины. Значит, во второй корзине осталось
(12 – (12 – х)) яблок.
В двух корзинах вместе осталось
(12 – х) + 12 – (12 – х) = 12 – х + 12–12 + х = 12.
В двух корзинах вместе осталось 12 яблок.
84. Этого не может сказать ни одна свинья, ведь свиньи, как известно, не говорят. Эта не очень серьезная задача основана на двусмысленности вопроса: «Сколько свиней могут сказать…?» Слово «сказать» в этом вопросе можно понимать буквально – говорить членораздельной человеческой речью, а также его можно воспринимать в переносном значении – кто-то говорит от имени или за тех, которые сами говорить не могут (не умеют).