Хронопотенциометрия в некоторых расплавах. Особенность – постоянная скорость подачи титранта в анализируемый расплав и непрерывная запись показателей рН-метра в процессе титрования. О количестве вещества судят по соответствующей длине диаграммной ленты самописца.
Применение хронопотенциометрии для физико-химического исследования расплавов
Определение коэффициента диффузии в расплавах:
где m>0 – концентрация ионов % масс;
М>0 – молекулярная масса, г/моль;
ρ– плотность электролита, г/см>3.
Определение толщины диффузного слоя
В условиях принудительного перемешивания у поверхности электрода существует ограниченный диффузный слой. Для определения толщины используется уравнение хронопотенциограммы:
где φ>∞– величина установившегося потенциала при заданном токе. По наклону прямой, выражающей зависимость (1), находят величину 4δ>2/π >2D>0.Отношение D>0/ δопределяют из значения установившегося потенциала
По величинам 4δ>2/π >2D>0и D>0/ δлегко найти δи D>0.
Определение растворимости Н>2, Cl>2, O>2 в расплаве. Электродные процессы в расплавах с участием Н>2, Cl>2, O>2 привлекают внимание исследователей в связи с развитием электрохимии топливных элементов. Растворимость газообразных веществ в расплавах находят по уравнению Сэнда. Величина произведения i x τ>1/2 однозначно связана с величиной растворимости Н>2, Cl>2, O>2 в расплаве, если между газами и компонентами расплава отсутствует какое-либо химическое взаимодействие. В двойной эвтектике CuCN и Cd(CN)>2 растворимость Н>2 подчиняется закону Генри. Для оценки абсолютного значения растворимости газов необходимо знать величину коэффициента диффузии. Если в исходном расплаве содержатся ионы О>2-, то между i x τ>1/2 и концентрацией ионов О>2- наблюдается линейная зависимость, на основании которой можно судить о содержании О>2- .
ЛЕКЦИЯ № 9. Термохимия
1. Понятие термохимии
Раздел физической химии и химической термодинамики, изучающий тепловые процессы теплоемкости веществ, называется термохимией.
δQ = dU + δA– первый закон термодинамики. δQ – не является функцией состояния. P = const || V = const – функции состояния при этих условиях. δQ>P = dH || δQ>V= dU>вн– функции состояния при этих условиях.
2. Закон Гесса
При изобарных и изохорных условиях теплота является функцией состояния.
В 1840 г. Г. Н. Гесс формулирует закон: «Тепловой эффект химической реакции не зависит от промежуточных стадий, а зависит только от начального и конечного состояния системы».
δQ>P = dH,
δQ>V = dU>вн,
Q>P = ΔH,
Q>V = ΔU>вн.
Современная формулировка закона Гесса – общие приращения энтальпии при переходе начальных веществ в продукты реакции не зависят от того, через какие промежуточные стадии прошла реакция.
Закон Гесса позволяет рассчитать тепловые эффекты или приращение энтальпии только при стандартных условиях (р = 1 атм = 10>5 Па, Т = 273 К + 25 = 298 К).
Теплоты при стандартных условиях сведены в таблицу (справочник под редакцией Нищенко). Для индивидуальных веществ: С, Н>2, Fe и др. – ΔН = 0.
Следствия из закона Гесса:
1) энтальпия образования 1 моля соединения из простых веществ не зависит от способа получения;