×
Traktatov.net » Головоломки. Фокусы. Задачи. Игры. Развлечения » Читать онлайн
Страница 43 из 49 Настройки

Задача имеет не одно, а три разных решения. Вот они:


123 + 4 – 5 – 67 = 55;

1-2-3-4 + 56 + 7 = 55;

12 – 3 + 45 – 6 + 7 = 55.

Пятью единицами (75)

Написать число 100 пятью единицами очень просто:


111 – 11 = 100.

Пятью пятерками (76)

5 × 5 × 5 – (5 × 5).


Это равно 100, потому что 125 – 25 = 100.

Пятью тройками (77)

33 × З +

= 100

Пятью двойками (78)

22 + 2 + 2 + 2 = 28.

Четырьмя двойками (79)

= 111

Четырьмя тройками (80)


Мы привели здесь решения только до 6. Остальные придумайте сами. Да и указанные решения можно составить и другими комбинациями троек.

Четырьмя четверками (81)


Который год? (82)

Будет только один такой год в XX веке: 1961-й.

В зеркале (83)

Единственные цифры, которые не искажаются в зеркале, – это 1, 0 и 8. Значит, искомый год может содержать в себе только такие цифры. Кроме того, мы знаем, что это один из годов XIX века, т. е. что первые его две цифры 18.

Легко сообразить теперь, какой это год: 1818-й. В зеркале 1818 год превратится в 8181-й: это ровно в 4½ раза больше, чем 1818:


1818 × 4½ = 8181.


Других решений задача не имеет.

Какие числа? (84)

Ответ прост: 1 и 7. Других таких чисел нет.

Сложить и перемножить (85)

Таких чисел сколько угодно:


3 × 1 = 3; 3 + 1 = 4;

10 × 1 = 10; 10 + 1=11


и вообще всякая пара целых чисел, из которых одно – единица.


Это потому, что от прибавления единицы число увеличивается, а от умножения на единицу остается без перемены.

Столько же (86)

Числа эти 2 и 2. Других целых чисел с такими свойствами нет.

Три числа (87)

1, 2 и 3 дают при перемножении и при сложении одно и то же:


1 + 2 + 3 = 6; 1 × 2 × 3 = 6.

Умножение и деление (88)

Таких чисел очень много. Например:


2: 1 = 2; 2 × 1 = 2;

7: 1 = 7; 7 × 1 = 7;

43: 1 = 43; 43 × 1 = 43.

Вдесятеро больше (89)

Вот еще четыре пары таких чисел:


11 и 110; 14 и 35; 15 и 30; 20 и 20.


В самом деле:

11 × 110 = 1210; 15 × 30 = 450;

11 + 110 = 121; 15 + 30 = 45;

14 × 35 = 490; 20 × 20 = 400;

14 + 35 = 49; 20 + 20 = 40.


Других решений задача не имеет. Довольно хлопотливо разыскивать решения вслепую. Знание начатков алгебры значительно облегчает дело и дает возможность не только отыскать все решения, но и удостовериться, что больше пяти решений задача не имеет.

На что он множил? (90)

Рассуждаем так. Цифра 6 получилась от сложения колонки из двух цифр, из которых нижняя может быть либо 0, либо 5. Но если нижняя 0, то верхняя 6. А может ли верхняя цифра быть 6? Пробуем: оказывается, чему бы ни равнялась вторая цифра множителя, никак не получается 6 на предпоследнем месте первого частного произведения. Значит, нижняя цифра предпоследней колонки должна быть 5; тогда над ней стоит 1.

Теперь легко восстановить часть стертых цифр:



Последняя цифра множителя должна быть больше 4, иначе первое частное произведение не будет состоять из четырех цифр. Это не может быть цифра 5 (не получается 1 на предпоследнем месте). Пробуем 6 – годится. Имеем:



Рассуждая далее подобным же образом, находим, что множитель – 96.

Пять пятниц (91)

Пять пятниц может быть в феврале високосного года (т. е. когда февраль имеет 29 дней). А именно если первая пятница будет 1 февраля, то