Реальное осуществление космической электротурбоустановки с ядерным реактором связано с выбором подходящего рабочего тела для основного (вторичного) контура.
В наземных атомных электростанциях с турбогенератором в качестве рабочего тела применяется вода. Но высокая коррозионная активность, большие давления пара (до 280 атм и более), высокая наведенная радиоактивность, а главное, низкие максимальные температуры цикла (не выше 300 °C) делают воду совершенно неприменимой для космических энергоустановок.
Наилучшие свойства имеют жидкометаллические теплоносители. Жидкие металлы: ртуть, натрий, калий, рубидий, цезий и некоторые другие — обладают очень высокой теплопроводностью, большой скрытой теплотой парообразования, небольшими давлениями паров при высоких температурах, что и оправдывает их широкое распространение в конструктивных разработках ядерных турбогенераторных установок. Антикоррозионные свойства и наведенная активность их также вполне приемлемы.
Принципиально турбогенераторная схема может осуществляться не только на парах жидких металлов, но и с газом в качестве рабочего тела — по так называемому циклу Брайтона, т. е. как газотурбинная установка, в состав которой вместо насоса входит компрессор. Но такая схема при некоторых преимуществах (более высокие температуры и высокие эксплуатационные качества) имеет очень существенные недостатки, в частности очень большой удельный вес.
Конструктивное решение турбогенераторной ядерной установки можно рассмотреть на примере разработанной в США системы SNAP-2 с электрической мощностью 3 квт (рис. 32).
В качестве теплоносителя первичного контура применен сплав натрия с калием, температура которого на выходе из реактора 650 °C. Теплоноситель вторичного контура — ртуть. Максимальная температура рабочего цикла 621 °C. Турбина — двухступенчатая. Площадь радиационного холодильника — излучателя — 9,3 м>2. Электрический генератор дает переменный ток напряжением 110 в, частотой 2000 гц.
Полный к. п. д. SNAP-2 равен всего лишь 6,5 %. Это значит, что из 50 квт тепловой мощности реактора около 47 квт рассеивается излучателем или уходит на нагрев конструкции. Общий вес системы SNAP-2 без биологической защиты — 270 кг (из них 90 кг приходится на реактор), т. е. удельный вес установки без защиты составляет 90 кг/квт.
Но и этот довольно высокий удельный вес ядерной установки заметно увеличится из-за веса биологической защиты, который в большой степени зависит от размещения энергоустановки на станции, а также от условии эксплуатации, в частности от места запуска реактора — будет ли он производиться на Земле или после выведения ОКС на орбиту.