×
Traktatov.net » Обитаемые космические станции » Читать онлайн
Страница 53 из 91 Настройки

На графике рис. 23 в логарифмическом масштабе показано изменение потребного веса защитных свинцовых экранов в зависимости от допускаемой скорости нарастания биологической дозы, создаваемой протонами внутреннего пояса радиации на высоте 3500 км и протонами от солнечной вспышки в мае 1959 г. [16].


Рис. 23. График изменения веса защиты в зависимости от скорости нарастания условной биологической дозы:
>1 — от протонов во внутреннем поясе радиации; 2 — от протонов солнечной вспышки

На том же графике можно видеть, что если экипаж ОКС длительное время находится на орбите и существует опасность возникновения солнечной вспышки, то для снижения скорости нарастания дозы до более или менее приемлемого уровня (0,001 рентгена в минуту) свинцовая защита должна иметь толщину, соответствующую погонному весу более 500 кг на квадратный метр.

Приведенные зависимости носят, разумеется, общий оценочный характер и нуждаются в дальнейшем уточнении. Однако уже в таком виде они дают представление о потребной толщине свинцовых экранов и свидетельствуют о необходимости применения более эффективных в весовом отношении защитных материалов. Такими материалами могут оказаться исследуемые в настоящее время бор, углерод, полиэтилен и их комбинации.

Весьма перспективным средством повышения эффективности противорадиационной защиты считается комбинирование пассивного экрана с одним из активных способов.

Зная энергию приходящих протонов, нетрудно подсчитать потенциал электростатического поля для отражения всех протонов с заданным уровнем энергии. При создании электростатического поля вокруг космического аппарата его можно окружить двумя концентрическими сферами: внешней, заряженной отрицательно, и внутренней, заряженной положительно. Чем больше будет радиус внешней сферы, тем меньше величина заряда, которую надо сообщить сферам для отражения всех протонов с заданной энергией.

Разумеется, создание противорадиационной защиты подобного типа является пока лишь проблемой. При наличии внешней сферы с радиусом лишь в несколько метров (что само по себе связано с большими конструктивными трудностями) величина заряда, необходимая для защиты от высокоэнергичных протонов, должна быть огромной. Однако в условиях космического вакуума создать большие заряды, видимо, будет легче, чем в атмосфере, где велики токи утечки. Осуществимость такой противорадиационной защиты всецело зависит от создания сверхвысоковольтных электростатических генераторов приемлемого веса.

Электромагнитное поле также может изменять траекторию заряженных частиц, не изменяя их энергии. Для отражения высокоэнергичных протонов важна не только величина электромагнитного поля, но и его форма. Расчеты показывают, что для создания вокруг ОКС сферического защитного электромагнитного поля потребуется громадная электрическая мощность порядка 10-100 Мвт. Несколько эффективнее будут поля других, более сложных форм, например спиральное. Но нельзя забывать и о том, что наличие сильного электромагнитного поля вокруг ОКС затруднит выполнение многих научных экспериментов.