Это особенно верно для перспективного анализа. Одно дело собирать данные за прошлый период для ответа на вопрос «Каков объем рынка данных приборов?», и совсем другое – на вопрос вроде «Какую рентабельность в следующие 10 лет имел бы новый завод по производству этих приборов в Верхнем Сандаски?». Ответ в последнем случае зависит от множества переменных, значение которых в данный момент невозможно предугадать: будущий спрос на эти приборы, появление новых конкурентов, изменение вкусов потребителей и т.д. Любая цифра, которую вы предложите, скорее всего будет неправильной. Поэтому в данном случае достаточно приблизительного ответа. Такой ответ, как правило, можно дать очень быстро, тогда как на погоню за иллюзорной точностью ушло бы гораздо больше времени.
Кроме того, вам будет легче провести анализ, если нужно быстро получить какой-то приблизительный ответ, чем при необходимости найти ответ с точностью до четвертого знака после запятой. Один бывший сотрудник McKinsey так отзывается об этом:
Я считаю, что приблизительный анализ невероятно полезен, потому что позволяет получить примерные цифры. Во многих случаях мне просто нужно знать, например, во сколько обойдется идея нового продукта: $5 млн., $50 млн. или $500 млн. А некоторым людям очень трудно с этим свыкнуться. Они думают: «Вот я скажу $50 млн., а вдруг окажется $75 млн.?» Да это для меня не важно! «Но это же ошибка на 50%!» – говорят они. Я отвечаю, что эта цифра гораздо лучше, чем ее полное отсутствие.
Как мы уже говорили, некоторые люди стремятся провести все существующие виды анализа; а другие стараются непременно получить ответ с точностью до четвертого знака после запятой. Нарас Ээчамбади, основатель и СЕО компании Quaero, Inc., которая предоставляет маркетинговые консультации с помощью информационных технологий, знаком с этой ситуацией изнутри:
Я нанимаю много людей с ученым званием, и мне приходится чуть ли не запрещать им рассматривать все модели распределения ошибок в данных. Одно дело, когда речь идет о здравоохранении и ошибка может стоить людям жизни. И совсем другое – маркетинг: мы просто пытаемся подзаработать. Так что давайте не будем долго раскачиваться, а возьмемся за практическую работу, не зацикливаясь на нюансах.
Можно долго повышать точность своих моделей развития, но в итоге этот процесс приносит все меньше пользы или тормозит срок выхода на рынок. Нам нужна не идеальная модель, а просто то, что лучше имеющегося у нас сегодня. Давайте сначала заработаем какие-то деньги, а потом, по ходу дела, будем совершенствовать свою модель.
Еще раз повторим: подавляйте в себе и в своей команде желание излишне увлечься данными, потому что оно будет стоить вам денег и времени.
Применяйте к трудным проблемам метод триангуляции. В геодезии и картографии триангуляция – метод определения точного местоположения неизвестной точки путем выполнения измерений с двух известных. Вы можете прибегнуть к аналогичной технике, когда у вас очень мало информации о проблеме (а в бизнесе так бывает очень часто). В какой-то момент вы столкнетесь с вопросом, который на первый взгляд не имеет ответа. Причины бывают разные: например, нужные данные являются коммерческой тайной вашего злейшего конкурента, или вы идете по совершенно новому пути в своей отрасли, или что-то еще превратило этот вопрос в такой крепкий орешек. Не отчаивайтесь. Скорее всего вы сможете придумать какие-то виды анализа, которые позволят нащупать хотя бы вероятные рамки ответа. Опять-таки, если вы идете в верном направлении и правильно определили примерный порядок величины, скорее всего этого будет достаточно для решения.