Единственный способ определить правильность предположений клиента – копать глубже, задавать вопросы и выявлять факты. Проявив некоторый скептицизм в самом начале, впоследствии вы сможете избежать многих разочарований. Более того, вы окажете клиенту большую услугу, найдя реальную проблему, даже если истина ему не понравится.
Полученные уроки и иллюстрации внедрения
На своем опыте бывшие сотрудники McKinsey убедились, что процесс направляемого гипотезами принятия решений легко перенести на другие компании. Для него не нужно много ресурсов; его можно проводить как в командах, так и самостоятельно; он применим к широкому спектру проблем. Опросив бывших сотрудников McKinsey, мы обнаружили две веские причины необходимости начальной гипотезы при решении проблемы:
– Начальная гипотеза экономит ваше время.
– Начальная гипотеза помогает эффективнее принимать решения.
Начальная гипотеза экономит ваше время. Столкнувшись со сложной проблемой, большинство людей начнет прорабатывать все доступные данные, пока не придет к решению. Иногда это называют дедуктивным подходом: если А, тогда Б; если Б, тогда В… наконец, если Ю, тогда Я. Формируя же начальную гипотезу, вы перескакиваете прямо к Я, а оттуда уже легче двигаться обратно к А. Простой пример – изображенный на бумаге лабиринт, который нужно пройти, отмечая свой путь карандашом; такие головоломки публикуются в воскресных газетах или сборниках загадок. Любой, кто решал их, может подтвердить, что лабиринт легче пройти от конца к началу, а не со входа: зная, где находится конечная точка, вы сразу исключаете множество тупиковых направлений.
Сформировав начальную гипотезу, вы быстрее пройдете по лабиринту своей бизнес-проблемы, потому что сможете делать выводы на основе недостаточной информации – ведь именно такая информация обычно доступна вначале. Это особенно относится к случаям, когда вы оказываетесь первопроходцем в какой-либо области, где до вас сбором данных не занимался вообще никто. Это обнаружил Омовале Креншоу, стремясь понять, как развивать электронную коммерцию в Африке:
Иногда у нас в McKinsey было такое изобилие данных, что было трудно их анализировать; в результате ни мы, ни наши клиенты ничего не делали. А когда мы начали работать над веб-порталом Африки, пришлось разбираться, что к чему, при явной нехватке данных. Нам просто пришлось спрашивать себя: «Итак, что мы реально знаем о крупнейших четырех-пяти рынках? Как их приблизительно оценить?» Мы делали черновые подсчеты, пытаясь добиться приблизительной точности и строя на их основании некоторые предположения. Мы говорили: «Хорошо, если предположить, что размер рынка – Х, то чем мы должны руководствоваться?»
Потом этот процесс стал повторяться: «Мы думаем, что размер рынка – Х, в таком случае Y должно быть верным», и далее следовал переход к рассмотрению Y. Постепенно становилось все очевиднее, что мы идем по верному пути. Реальный размер рынка мы еще не определили, но у нас стало гораздо больше уверенности в том, что фактически мы провели нужную оценку использования всех возможных ресурсов.