Тем не менее, многие возражают, утверждая, что абсолютный характер математической истины никоим образом не является аргументом в пользу реальности «существования» математических концепций и математических истин. (Время от времени я слышу, что математический платонизм якобы устарел. Разумеется, мне известно, что сам Платон умер что-то около 2340 лет назад, однако едва ли это можно считать достаточной причиной! Более серьезную причину могут составить трудности, с которыми порой сталкиваются философы, пытаясь обосновать целиком и полностью абстрактный мир, способный оказывать реальное воздействие на мир физический. Эта фундаментальная проблема, собственно, является частью одной из тех загадок, к которым мы очень скоро перейдем.) На деле же идея реальности математических концепций вполне естественна для математиков, чего нельзя сказать о тех, кто никогда не испытывал радости исследования чудес и тайн того мира. Впрочем, на данном этапе от читателя не требуется соглашаться с тем, что математические концепции действительно образуют «мир», реальность которого сравнима с реальностью физического и ментального миров. Различия во взглядах на природу математических концепций для нас пока существенной роли не играют. Можете, если хотите, рассматривать «платоновский мир математических форм» как риторическую фигуру, введенную для удобства последующих рассуждений. Когда мы доберемся до трех загадок, связывающих эти три «мира», причина именно такого выбора слов, возможно, станет несколько яснее.
Что же это за загадки? Для начала взгляните на рис. 8.1. Первая загадка: почему столь точные и фундаментальные математические законы играют такую важную роль в поведении физического мира? Кажется, что сам мир физической реальности каким-то таинственным образом возникает из платоновского мира математики. Этот процесс проиллюстрирован направленной вниз стрелкой на рисунке справа — от платоновского мира к физическому. Вторая загадка: как физический мир порождает восприятие объектов в сознании? Каким таким таинственным образом сложно организованные материальные объекты производят из самих себя объекты ментальные? Этот процесс представлен на рис. 8.1 стрелкой внизу, направленной от физического к ментальному миру. И наконец, последняя загадка: как мысль «творит» из той или иной ментальной модели математическую концепцию? Эти по виду нечеткие, ненадежные и часто вовсе неподходящие ментальные инструменты, доставшиеся нам, похоже, в комплекте с ментальным миром, каким-то таинственным образом оказываются, тем не менее, способны (по крайней мере, когда они «в ударе») производить из пустоты абстрактные математические формы, открывая нам тем самым доступ, через посредство понимания, в платоновское царство чистой математики. Этот процесс символизирует стрелка слева на рисунке, направленная вверх, от ментального миру к платоновскому.
Рис. 8.1. Кажется, что каждый из трех миров — платоновский математический, физический и ментальный — неким таинственным образом «произрастает» из какой-то малой части своего предшественника (или, по крайней мере, очень тесно с этим предшественником связан).