В эксперименте с двумя прорезями идеи Фейнмана сводятся к тому, что частицы выбирают пути, которые ведут либо сквозь одну прорезь, либо сквозь вторую; пути, что ведут сквозь первую прорезь, затем обратно через вторую, и вновь снова через первую; пути, ведущие в ресторан, где подают креветки в соусе карри, затем к Юпитеру, закручиваясь вокруг него несколько раз перед возвращением обратно; и даже пути, что ведут через Вселенную и обратно. Это, по мнению Фейнмана, объясняет, как частица получает информацию о том, какие прорези открыты — если прорезь открыта, частица направляется сквозь неё. Когда обе прорези открыты, пути частиц, путешествующих через одну прорезь, могут пересекаться с путями через вторую, вызывая тем самым интерференцию. Быть может это прозвучит невероятно, но для нынешней фундаментальной физики в целом, и для этой книги в частности, теория Фейнмана оказалась много полезнее, чем оригинальная.
Фейнмановское видение квантовой реальности является ключевым в понимании теорий, которые мы скоро представим, поэтому стоит потратить некоторое время на то, чтобы понять, как там всё устроено. Представьте себе простой процесс, в котором частица из пункта А начинает своё свободное движение. В Ньютоновой модели эта частица проследует по прямой. По истечении некоторого определённого времени мы обнаружим частицу в определенном пункте В, находящимся на этой прямой. В модели Фейнмана квантовая частица проводит выборку всех путей, соединяющих пункты А и Б, составляя при этом число, называемое фазой для каждого пути. Эта фаза представляет собой такое положение в волновом цикле, в котором волна находится либо на верхнем, либо на нижнем пике, или где-то посередине. Формула Фейнмана по математическому расчёту этой фазы показывает, что когда вы складываете вместе волны всех путей, вы получаете «амплитуду вероятности» достижения частицей из пункта А пункта Б. А затем квадрат амплитуды вероятности даёт конечную вероятность достижения пункта Б.
Фаза, в которой все отдельные пути входят в Фейнманову сумму (и, следовательно, в вероятность прохождения пути от А к Б) может быть представлена в виде стрелы определённой ограниченной длины, но могущей воткнуться в любом направлении. Добавим ещё две фазы: поместим стрелу, представляющую одну фазу у наконечника стрелы, представляющей другую фазу, и тем самым получим третью, общую стрелу, представляющую сумму. Чтобы увеличить количество фаз, просто продолжайте добавлять стрелы. Заметим, что когда фазы выстроены в линию, стрела, представляющая сумму может быть довольно длинной. Но если стрелы направлены в разные стороны, то они быстро заканчиваются, по мере их добавления, оставляя вас с совсем небольшим количеством стрел. Эта идея изображена на рисунке ниже.
Для выполнения условий Фейнмана по расчёту вероятностной амплитуды, что частица из пункта А достигнет пункта Б, вы просто складываете фазы или стрелы, представляющими все пути, связывающие А и Б. Существующих путей бесконечно много, что слегка усложняет расчёты, но этот способ работает. Некоторые пути показаны ниже.