×
Traktatov.net » Великий замысел » Читать онлайн
Страница 17 из 70 Настройки

Другая проблема, которую модельно-ориентированный реализм пытается решить (или, как минимум, избежать) — это значение «существования». Как я узнаю, существует ли стол в данной комнате, если я выйду из нее и не смогу его видеть? Что будет значить утверждение о том, что предметы, которых мы не видим, такие как электроны или кварки (частицы, и которых, как считается, состоят протоны[5] и нейтроны[6]) — существуют? Кто-то мог бы придерживаться модели, когда стол исчезает, когда я выхожу из комнаты, появляется вновь, когда я возвращаюсь, но это было бы очень грубо. И что было бы, если бы потолок обрушился, когда я вышел из комнаты? Каким же образом в рамках модели «Стол-исчезает-когда-я-выхожу-из-комнаты» я мог бы объяснить то, что когда я вошел в комнату, стол возник заново — разломанный и под обломками потолка? Модель, в которой стол никуда не исчезает, является гораздо более простой, а также гармоничной с наблюдением. Это все, что можно спросить.

В ситуации, когда мы не можем увидеть субатомные частицы, электроны являются удобной моделью, объясняющей такие наблюдения, как следы в конденсационной камере или световые точки на экране телевизора, а также многие иные явления. Говорят, что электрон был открыт в 1897 году физиком Томпсоном в лаборатории Кавендиш в Университете Кембридж. Он экспериментировал с электрическим током в стеклянных трубках — феноменом, называемым катодные лучи. Эксперименты привели его к смелому заключению о том, что загадочные лучи состояли из мельчайших «корпускулов», которые являлись материальными составляющими частями атомов, прежде считавшимися неделимыми фундаментальными элементами материи. Томсон не «увидел» электрон, так же как и его предположение не было прямо или однозначно продемонстрировано экспериментами. Но модель оказалась ключевой в применении от фундаментальной до прикладной науки, и сегодня все физики уверены в существовании электронов, даже если вы их не видите.

Кварки, которые мы также не можем наблюдать, добавлены в модель, чтобы объяснить свойства протонов и нейтронов в ядре атома. Хотя протоны и нейтроны, как утверждается, состоят из кварков, мы никогда экспериментально не обнаружим кварки, потому что притягивающие силы между кварками увеличиваются при их отдалении друг от друга, и поэтому несвязанные, свободные кварки не могут существовать в природе. Они всегда проявляются в группах из трех (протоны и нейтроны) кварков, или парами: кварк и антикварк (пи-мезон), и ведут себя так, как если бы были соединены резинкой.

И вопрос «имеет ли смысл говорить, что кварки реально существуют, если вы никогда не сможете выделить один кварк?» был спорным долгие годы после того как кварковая модель была впервые предложена. Идея о том, что определенные частицы состоят из различных комбинаций нескольких более простых частиц, позволила создать принципы, которые в результате дали простое и привлекательное объяснение их свойств. Но не смотря на то, что физики привыкли рассматривать частицы, существование которых подразумевалось только в статистических всплесках данных по разбиению других частиц, идея представления реальности частицы, которая в принципе не поддаётся наблюдению, была чересчур невероятна для многих физиков. Однако, спустя годы, когда кварковая модель стала приводить к более и более правильным предсказаниям, противников этой модели стало меньше. Конечно возможно, что какие-нибудь инопланетные существа с семнадцатью руками, инфракрасными глазами, и привычкой выдувать взбитые сливки из ушей сделает те же экспериментальные исследования что и мы, но опишет их без использования кварков. Тем не менее, согласно моделезависимому реализму, кварки существуют в модели, которая согласуется с нашими наблюдениями поведения субатомных частиц.