При построении математической модели для определения геологического возраста общего предка всех живущих людей хорошим упрощением – чем-то вроде игрушечного мира – будет популяция с неизменной численностью, живущая на острове в отсутствие иммиграции или эмиграции. Пусть это будет идеализированная популяция тасманийских аборигенов до XIX века, когда их истребили, будто паразитов, европейские колонисты. Последняя чистокровная тасманийка Труганини умерла в 1876 году, вскоре после своего друга, “короля Билли”, из мошонки которого сделали кисет (здесь стоит вспомнить нацистов и их абажуры). Тасманийские аборигены оказались в изоляции около 13 тыс. лет назад, когда сухопутные “мосты” с Австралией оказались затопленными вследствие глобального поднятия уровня океана. Тасманийцы не знали чужаков, пока в полной мере не испытали их присутствие во время Холокоста XIX века. Для целей моделирования удобнее считать, что Тасмания оставалась изолированной 13 тыс. лет – до 1800 года. Условной “современностью” в пространстве моделирования будем считать 1800 год.
Следующий этап – моделирование принципа образования пар. В реальном мире люди женятся по любви или устраивают браки по расчету. Мы заменим эти милые подробности послушной математикой. Можно придумать несколько моделей образования пар. В стохастической диффузионной модели мужчины и женщины, которые ведут себя как частицы, хаотично распространяющиеся от места своего зарождения, с ближайшими соседями столкнутся с более высокой вероятностью, чем с соседями более далекими. Еще более простая, но менее реалистичная модель – случайное спаривание. Здесь мы забываем о расстоянии и исходим из того, что в пределах острова равновероятно образование пар любыми мужчинами и женщинами.
Конечно, эти модели неправдоподобны. Случайная диффузия предполагает, что люди от исходной точки расходятся во всех направлениях. В реальности их пути определяются дорогами – узкими ручейками генов, прорезающими островные леса и луга. Случайная модель спаривания еще менее реалистична. Но не беда. Мы создаем идеальные модели. Результат может показаться удивительным. И тогда мы должны решить, что кажется нам более удивительным: реальный мир или результат моделирования.
Джозеф Чан, следуя давней традиции специалистов по математической генетике, остановился на случайном спаривании: в своей модели он не учитывал размер популяции, приняв его за константу. Чан не рассматривал Тасманию, но для простоты расчетов допустим, что постоянная численность популяции составляла 5 тыс. человек (это одна из оценок аборигенного населения Тасмании 1800 года, накануне резни). Повторюсь, такие упрощения крайне важны для математического моделирования: это не недостаток метода, а наоборот, в некоторых отношениях его достоинство. Понятно, что Чан верит в случайное спаривание людей не больше, чем Евклид верил в то, что у прямых нет толщины. Посмотрим, куда нас приведут эти допущения, и решим, стоит ли обращать внимание на отличия модели от реального мира.
На сколько поколений назад нам нужно отойти, чтобы встретить человека, который был предком всех ныне живущих людей? Вот ответ, рассчитанный с помощью абстрактной модели: логарифм (с основанием 2) численности населения. Логарифм числа по основанию 2 – это то, сколько раз нужно умножить 2 на само себя, чтобы получить это число. Чтобы получить 5000, нужно умножить 2 на 2 примерно 12,3 раза. Значит, в нашем примере с Тасманией мы должны вернуться на 12,3 поколения, чтобы найти сопредка. Допустим, за столетие сменяется четыре поколения. Тогда продолжительность жизни 12,3 поколения составит 400 лет. Или еще меньше – если детьми обзаводятся родители, не достигшие 25 лет.