141. Часто говорят, что композитором или художником, или писателем, или ученым надо родиться. Верно ли это? Действительно ли композитором (художником, писателем, ученым) надо родиться? (Задача-шутка).
142. Для того, чтобы видеть, совсем не обязательно иметь глаза. Без правого глаза мы видим. Без левого тоже видим. А поскольку кроме левого и правого глаза других глаз у нас нет, то оказывается, что ни один глаз не является необходимым для зрения. Верно ли это утверждение? Если нет, то какая ошибка в нем допущена?
143. Попугай прожил меньше 100 лет и умеет отвечать только на вопросы «да» и «нет». Сколько вопросов ему надо задать, чтобы узнать его возраст?
144. Сколько кубиков изображено на этом рисунке?
145. Три теленка – сколько ног? (Задача-шутка).
146. Один человек, попавший в неволю, рассказывает следующее. «Моя темница находилась в верхней части замка. После многодневных усилий мне удалось выломать один из прутьев в узком окне. В образовавшееся отверстие можно было пролезть, но расстояние до земли не оставляло никаких надежд просто спрыгнуть вниз. В углу темницы я обнаружил забытую кем-то веревку. Однако она оказалась слишком короткой, чтобы можно было спуститься по ней. Тогда я вспомнил, как один мудрец удлинял слишком короткое для него одеяло, обрезав часть его снизу и пришив ее сверху. Поэтому я поспешил разделить веревку пополам и снова связать две образовавшиеся части. Тогда она стала достаточно длинной, и я благополучно спустился по ней вниз». Каким образом рассказчику удалось это сделать?
147. Собеседник просит Вас задумать любое трехзначное число, а потом предлагает записать его цифры в обратном порядке, чтобы получилось еще одно трехзначное число. Например, 528–825, 439–934 и т. п. Далее он просит от большего числа отнять меньшее и сообщить ему последнюю цифру разности. После этого он называет разность. Как он это делает?
148. Семеро шли – семь рублей нашли. Если бы не семеро, а трое пошли, то много бы нашли? (Задача-шутка).
149. Как разделить рисунок, состоящий из семи кружочков, тремя прямыми линиями на семь частей таким образом, чтобы в каждой части находился один кружочек?
150. Земной шар стянули обручем по экватору. Потом длину обруча увеличили на 10 м. При этом между поверхностью Земного шара и обручем образовался небольшой зазор.
Сможет ли человек пролезть в этот зазор? (Длина земного экватора приблизительно равна 40 000 км).
151. У портного есть кусок материи в 16 метров длиной, от которого он отрезает ежедневно по 2 метра. По истечении скольких дней он отрежет последний кусок?
152. Из 12 спичек построено четыре равных квадрата. Как переложить три спички таким образом, чтобы получилось три равных квадрата?
153. Колесо с лопастями установлено около дна реки, причем оно может свободно вращаться. Если течение реки направлено слева направо, то в какую сторону будет вращаться колесо? (См. рисунок).
154. В коммунальной квартире жилец Иванов положил в общую плиту 3 полена своих дров, а жилец Сидоров – 5 поленьев. Жилец Петров, у которого не было своих дров, получил от обоих соседей разрешение приготовить свой обед на общем огне. В возмещение расходов он уплатил соседям 8 рублей. Каким образом они должны поделить между собой эту плату?