×
Traktatov.net » Математика для любознательных » Читать онлайн
Страница 32 из 108 Настройки

Профессор хотел было уже отложить листок, когда Буркель сказал:

- Если собеседницы наши не запротестуют, я позволю себе задать еще только один вопрос. Мне кажется, что для придуманной тобой библиотеки не хватит места в целом мире.

- Это мы сейчас узнаем, - сказал профессор и снова взялся за карандаш. Сделав выкладки, он объявил:

- Если нашу библиотеку сложить так, чтобы каждые 1000 томов заняли один кубический метр, то целую вселенную, до отдаленнейших туманностей, пришлось бы заполнить такое число раз, которое короче нашего числа томов всего лишь на 60 нулей[32]. Словом, я был прав: никакими средствами невозможно приблизиться к наглядному представлению этого исполинского числа.


Примечания редактора

Примечание 1. Это поражающее вычисление нередко фигурирует в книгах по теории вероятности. Французский математик Э. Борель в своей известной книге «Случай» придает ему следующую форму:

Предположим, что число знаков, употребляемых в письме, считая также знаки препинания и т. п., равняется 100; книга среднего размера содержит менее миллиона типографских знаков. Спрашивается, какова вероятность вынуть целую книгу, выбирая наудачу по одной букве?

Очевидно, вероятность того, чтобы вынутая буква была первой буквой книги, равна 1/100; она также равна 1/100 для того, чтобы вторая вынутая буква была второй буквой книги; а так как эти две вероятности независимы, то вероятность, что случатся оба события, равна

То же самое рассуждение можно повторить и для третьей буквы, для четвертой и т. д. Если их миллион, то вероятность, что случай даст именно их, равна произведению миллиона множителей, из которых каждый равен одной сотой; оно равно


Примечание 2. В этом расчете нет преувеличения: он вполне точен для тех представлений о размере вселенной, которые господствовали в момент написания рассказа. Интересно повторить вычисление, исходя из современных представлений.

Согласно новейшим исследованиям астронома Кертиса, самые далекие объекты вселенной - спиральные туманности - расположены от нас на расстоянии 10 миллионов световых лет. Световой год, т. е. путь, проходимый светом в течение года, равен, круглым числом, 10 биллионам километров, т. е. 10>13 км. Следовательно, радиус видимой вселенной мы можем считать равным

10>13 х 10>7 = 10>20 километров,

или

10>20 х 1000 = 10>23 метров.

Объем такого шара в кубич. метрах равен

>4/>3 (10>23)>3 = около 4 x 10>69 куб. метров.

Считая по 1000 томов в куб. метре объема, узнаем, что вселенная указанных размеров могла бы вместить только

4 x 10>69 x 1000 = 4 х 10>72 томов.

Следовательно, разделив все число томов «универсальной библиотеки» на это число, мы сократили бы ряд нулей на 73; разница между этим результатом и приведенным в рассказе, как видим, несущественна.


Литературная машина


Поучительно рассмотреть проект видоизменения идеи Лассвица, сущность которого ясна из следующего воображаемого разговора:

- В том виде, какой Лассвиц придал своей идее «универсальной библиотеки», она, конечно, неосуществима. Слишком уж велик размах: перебирать все комбинации из миллиона типографских знаков! Неудивительно, что получаются сверхастрономические числа. Другое дело - если ограничиться гораздо более скромными рамками.